GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2021-05-19
    Description: Thousands of species migrate [1]. Though we have some understanding of where and when they travel, we still have very little insight into who migrates with whom and for how long. Group formation is pivotal in allowing individuals to interact, transfer information, and adapt to changing conditions [2]. Yet it is remarkably difficult to infer group membership in migrating animals without being able to directly observe them. Here, we use novel lightweight atmospheric pressure loggers to monitor group dynamics in a small migratory bird, the European bee-eater (Merops apiaster). We present the first evidence of a migratory bird flying together with non-kin of different ages and sexes at all stages of the life cycle. In fact, 49% stay together throughout the annual cycle, never separating longer than 5 days at a time despite the ∼14,000-km journey. Of those that separated for longer, 89% reunited within less than a month with individuals they had previously spent time with, having flown up to 5,000 km apart. These birds were not only using the same non-breeding sites, but also displayed coordinated foraging behaviors—these are unlikely to result from chance encounters in response to the same environmental conditions alone. Better understanding of migratory group dynamics, using the presented methods, could help improve our understanding of collective decision making during large-scale movements.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-19
    Description: Many migratory goose populations have thrived over the past decades and their reliance on agricultural resources has often led to conflicts. Control and management measures are sought after but since migratory geese use several sites in their annual cycle, local management actions should consider their potential effects further down the flyway. We used a behaviour‐based migration model to illustrate the consequences of management actions involving hunting, derogation shooting and scaring at single or multiple locations along the flyway, considering various mechanisms of how geese might perceive shooting/hunting. Furthermore, as a proxy for the agricultural damage caused, we calculated the per capita biomass consumption between scenarios—both over time and cumulatively. We found that hunting, shooting and scaring can result in a suite of direct and indirect consequences on migration and foraging behaviour. Most importantly, hunting/shooting on a particular site had implications not only for the behaviour at the actual site but also for behaviour at, and use of, other sites. Furthermore, the specific consequences of shooting/hunting could be counter‐intuitive, that is, aggravate rather than alleviate agricultural damage, depending on where along the migration route changes had taken place and the mechanisms through which hunting/shooting was assumed to affect geese. Synthesis and applications . Management plans are being discussed or implemented for several migratory goose populations and often include shooting, hunting or scaring at one or multiple locations. Using a behaviour‐based model, we assessed the consequences of such local management measures and found that they can indeed lead to a reduction of agricultural conflicts locally but may also aggravate the conflict or shift it to other sites along the flyway. Thus, we recommend the use of these models to scrutinize the efficiency of specific management measures and to assist in identifying an international management regime that minimizes conflicts on a flyway level while still maintaining migratory populations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3Oikos, 125(5), pp. 605-612, ISSN: 00301299
    Publication Date: 2021-05-19
    Description: Migratory connectivity can have important consequences for individuals, populations and communities. We argue that most consequences not only depend on which sites are used but importantly also on when these are used and suggest that the timing of migration is characterised by synchrony, phenology, and consistency. We illustrate the importance of these aspects of timing for shaping the consequences of migratory connectivity on individual fitness, population dynamics, gene flow and community dynamics using examples from throughout the animal kingdom. Exemplarily for one specific process that is shaped by migratory connectivity and the timing of migration – the transmission of parasites and the dynamics of diseases – we underpin our arguments with a dynamic epidemiological network model of a migratory population. Here, we quantitatively demonstrate that variations in migration phenology and synchrony yield disease dynamics that significantly differ from a time‐neglecting case. Extending the original definition of migratory connectivity into a spatio‐temporal concept can importantly contribute to understanding the links migratory animals make across the globe and the consequences these may have both for the dynamics of their populations and the communities they visit throughout their journeys.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-05-19
    Description: In their 2015 Current Biology paper, Streby et al. [1] reported that Golden-winged Warblers (Vermivora chrysoptera), which had just migrated to their breeding location in eastern Tennessee, performed a facultative and up to “〉1,500 km roundtrip” to the Gulf of Mexico to avoid a severe tornadic storm. From light-level geolocator data, wherein geographical locations are estimated via the timing of sunrise and sunset, Streby et al. [1] concluded that the warblers had evacuated their breeding area approximately 24 hours before the storm and returned about five days later. The authors presented this finding as evidence that migratory birds avoid severe storms by temporarily moving long-distances. However, the tracking method employed by Streby et al. [1] is prone to considerable error and uncertainty. Here, we argue that this interpretation of the data oversteps the limits of the used tracking technique. By calculating the expected geographical error range for the tracked birds, we demonstrate that the hypothesized movements fell well within the geolocators’ inherent error range for this species and that such deviations in latitude occur frequently even if individuals remain stationary.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...