GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-28
    Description: Cilengitide is a stable cyclic pentapeptide containing an Arg-Gly-Asp motif responsible for selective binding to α V β 3 and α V β 5 integrins. The candidate drug showed unexpected inhibition of cytochrome P450 (P450) 3A4 at high concentrations, that is, a 15-mM concentration caused attenuation of P450 3A4 activity (depending on the probe substrate): 15–19% direct inhibition, 10–23% time-dependent inhibition (30-minute preincubation), and 54–60% metabolism-dependent inhibition (30-minute preincubation). The inactivation efficiency determined with human liver microsomes was 0.003 ± 0.001 min –1 mM –1 and was 0.04 ± 0.01 min –1 mM –1 with baculovirus-based microsomes containing recombinant P450 3A4. Neither heme loss nor covalent binding to apoprotein could explain the observed reductions in residual activity. Slowly forming type II difference spectra were observed, with maximum spectral changes after 2 hours. Binding to both reduced and oxidized P450 3A4 was observed, with apparent K d values of 0.66 μ M and 6 μ M. The significance of the guanidine group in inhibition was demonstrated using ligand binding spectral changes and inactivation assays with guanidine analogs (debrisoquine, N -acetylarginine- O -methyl ester) and the acetylated ornithine derivative of cilengitide. The observed inhibition could be explained by direct inhibition, plus by formation of stable complexes with both ferric and ferrous forms of heme iron and to some extent by the formation of reactive species capable to react to the protein or heme. Formation of the complex required time and NADPH and is attributed to the guanidino group. Thus, the NADPH-dependent inhibition is considered to be mainly due to the formation of a stable complex rather than the formation of reactive species.
    Print ISSN: 0090-9556
    Electronic ISSN: 1521-009X
    Topics: Chemistry and Pharmacology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-07
    Description: A MnCu-mixed oxide catalyst supported on a cordierite monolith was synthesized. The catalyst showed very good stability and high homogeneity and presented an excellent catalytic activity in the combustion of ethyl acetate, n- hexane, and its mixture. The total conversion temperature of the mixture was determined by the temperature at which the most difficult molecule was oxidized. An excellent catalytic activity in the combustion of ethyl acetate, n- hexane and its mixture was obtained with a MnCu/cordierite monolith catalyst. The monolithic catalyst was synthesized using a simple and reproducible method. Catalysts with homogeneous and well-adhered coatings were obtained. The simplicity of the method used favors scaling for industrial applications.
    Print ISSN: 0930-7516
    Electronic ISSN: 1521-4125
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-10
    Description: Author(s): G. Barbero, L. R. Evangelista, M. P. Rosseto, R. S. Zola, and I. Lelidis The twist-bend nematic phase, N TB , may be viewed as a heliconical molecular arrangement in which the director n precesses uniformly about an extra director field, t . It corresponds to a nematic ground state exhibiting nanoscale periodic modulation. To demonstrate the stability of this phase from the… [Phys. Rev. E 92, 030501(R)] Published Tue Sep 08, 2015
    Keywords: Liquid Crystals
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-04
    Description: Article The accumulation of chemoreceptor proteins at bacterial poles is thought to depend on their clustering into arrays. Strahl et al. show that in Bacillus subtilis , the chemoreceptor TlpA uses high membrane curvature as a spatial cue for polar localization, through the intrinsic curvature sensitivity of the receptor complex. Nature Communications doi: 10.1038/ncomms9728 Authors: H. Strahl, S. Ronneau, B. Solana González, D. Klutsch, C. Schaffner-Barbero, L. W. Hamoen
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-23
    Description: The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (uatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Science Data, Copernicus Publications, 8(2), pp. 605-649, ISSN: 1866-3516
    Publication Date: 2016-11-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Earth System Science Data
    In:  EPIC3Earth System Science Data, Earth System Science Data, 7, pp. 349-396, ISSN: 1866-3508
    Publication Date: 2018-02-16
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cy- cle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activ- ity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to charac- terise the annual estimates of each component of the global carbon budget. For the last decade available (2005– 2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projec- tion of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update docu- ments changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...