GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2023-09-12
    Keywords: Chukotka; Chukotka, Russia; deuterium excess; Deuterium excess; Deuterium excess, maximum; Deuterium excess, minimum; Event label; Holocene; Hydrogen isotopes; Koolen_Lake; Latitude of event; Location; Longitude of event; Lorino_1; Mass spectrometer Finnigan Delta-V; Oxygen isotopes; paleotemperature reconstruction; Peatland; radiocarbon age; Sample amount; Sample material; Uelen; winter air temperature; δ18O, water; δ18O, water, maximum; δ18O, water, minimum; δ Deuterium, water; δ Deuterium, water, maximum; δ Deuterium, water, minimum
    Type: Dataset
    Format: text/tab-separated-values, 46 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-12
    Keywords: Chukotka; Chukotka, Russia; Comment; DEPTH, sediment/rock; deuterium excess; Deuterium excess; Distance; Holocene; Hydrogen isotopes; Location; Mass spectrometer Finnigan Delta-V; Oxygen isotopes; paleotemperature reconstruction; Peatland; radiocarbon age; Uelen; winter air temperature; δ18O; δ Deuterium, water
    Type: Dataset
    Format: text/tab-separated-values, 184 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-06
    Keywords: AGE; Age, 14C calibrated, OxCal 4.2 and IntCal13; Age, error; Calendar age, maximum/old; Calendar age, minimum/young; Chukotka; Chukotka, Russia; DEPTH, sediment/rock; deuterium excess; Event label; Holocene; Hydrogen isotopes; Koolen_Lake; Latitude of event; Location; Longitude of event; Lorino_1; Oxygen isotopes; paleotemperature reconstruction; Peatland; radiocarbon age; Reference/source; Sample, optional label/labor no; Uelen; winter air temperature
    Type: Dataset
    Format: text/tab-separated-values, 60 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-06
    Description: The object of research is the Holocene massive ice veins on the Eastern coast of the Daurkin Peninsula, the easternmost part of the Chukotka. Peat bogs with ice veins occur on the surface of marine terraces (near Uelen and Lorino settlements) and on flood plain of the Koolen' Lake; the thickness of peat varies from 0.7 to 2.5 m. Radiocarbon dating of the peat enclosing the investigated ice veins near Uelen and Lorino indicated that the beginning of peat accumulation began at the end of Late Pleistocene - early Holocene, about 11 cal ka BP. On the flood plain of the Koolen' Lake peat bogs began to accumulate in the middle Holocene, i.e. around 6 cal ka BP. At the initial stage of peat bogs formation the rate of peat accumulation was high and could reach 1 cm/10 years. Ice veins occur at a depth of 0.5-1 m, and their lower parts are located in the underlying peat sandy loams and loams. In the upper levels of the peat bogs, narrow present-day ice veins are found, which are sometimes embedded in the upper parts of Holocene veins. A clear sign of syngenetic growth of veins is the upward bending of the layers of the host peat at the lateral contacts with the veins. The main source of water for the formation of ice veins is snow, as evidenced by the ratio of stable isotopes of oxygen and hydrogen and the values of deuterium excesses in the ice. A slight admixture of saline water (probably from a seasonally thawed layer) was noted in the veins near the Lorino settlement. Reconstructions of winter air paleotemperatures, performed on the basis of data of isotope-oxygen composition of ice from the veins, did show that at the period between 11 and 6 cal Ka BP, the mean winter air temperature on the Daurkin Peninsula was by 2-5 °C lower than today, but the air temperature of the coldest month (January or February) was still lower (by 4-8 °C) than today. The noticeable trend of increase of stable isotope values in the ice veins from early Holocene to the present time is indicative of a steady positive trend of mean winter air temperatures in the Holocene.
    Keywords: Chukotka; deuterium excess; Holocene; Hydrogen isotopes; Oxygen isotopes; paleotemperature reconstruction; Peatland; radiocarbon age; winter air temperature
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    University of Lisbon and the University of Évora
    In:  EPIC34th European Conference on Permafrost, Évora, Portugal, 2014-06-18-2014-06-21University of Lisbon and the University of Évora
    Publication Date: 2014-07-06
    Description: The intensity of thermo-erosion in the coastal zone of the Laptev Sea region mirrors the strong seasonality of exogenous hydro-meteorological conditions, mainly the presence or absence of sea ice and large temperature amplitudes. Permafrost, and in particular the widespread presence of syngenetic ground ice, both above and below sea level, constitute endogenous local conditions that make this coastline highly susceptible to currently observed warming and the associated extension of the open water season on the East Siberian arctic shelf. Although the general magnitude of erosion dynamics along Ice Complex coasts has been investigated, substantial information about local, regional, seasonal, and inter-annual variations still remain unknown. Monitoring capabilities could be increased by using the large areal coverage of historical records, accompanied by new acquisitions of contemporary high and very high resolution remote sensing data. Based on topographic reference measurements during field campaigns, we derived digital elevation models for subsequent orthorectification, in order to enable consistent distance and area measurements. A distinction was made between two related processes that work together, but with temporal and quantitative differences. Cliff top erosion (thermo-denudation) and cliff bottom erosion (thermo-abrasion) have different impacts on the volume of land loss and subsequent mass displacements. For a geographically broad baseline of well-distributed key areas, a proportional relationship of both processes on a multi-decadal long-term scale was observed, at site-specific average rates of -1.8 to -3.4 m/yr on Muostakh Island off the coast of Tiksi and along the continental coast of the Dmitriy Laptev Strait, respectively. However, short-term observations over the recent past revealed not only that erosion rates were 1.6 times more rapid on average, but also responded differently in terms of thermo-denudation and abrasion towards environmental forcings. This response was evaluated using the Normalized Difference Thermo-erosion Index (NDTI), whose value domain differentiates either marine or atmospherically driven erosion regimes, and may additionally indicate near-surface ground ice conditions. Seasonal observations on Muostakh, where the most rapid long-term rates of -9.6 m a-1 have been measured, revealed the existence of a thermo-erosional cycle, during which rates of either thermo-denudation or abrasion are overtaken by the respective opposite process. The frequency of this recurring pattern is also likely to have increased, at least since 2005, when the summer sea ice free period in the southern central Laptev Sea was above average and the sum of positive daily average surface air temperatures in Tiksi reached new all-time maxima. This is necessarily accompanied by larger short-term fluctuations of NDTI, causing coastal cliff morphologies to change more often, resulting in more effective volumetric erosion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-28
    Description: Permafrost coasts make up roughly one third of all coasts worldwide. Their erosion leads to the release of previously locked organic carbon, changes in ecosystems and the destruction of cultural heritage, infrastructure and whole communities. Since rapid environmental changes lead to an intensification of Arctic coastal dynamics, it is of great importance to adequately quantify current and future coastal changes. However, the remoteness of the Arctic and scarcity of data limit our understanding of coastal dynamics at a pan-Arctic scale and prohibit us from getting a complete picture of the diversity of impacts on the human and natural environment. In a joint effort of the EU project NUNATARYUK and the NSF project PerCS-Net, we seek to close this knowledge gap by collecting and analyzing all accessible high-resolution shoreline position data for the Arctic coastline. These datasets include geographical coordinates combined with coastal positions derived from archived data, surveying data, air and space born remote sensing products, or LiDAR products. The compilation of this unique dataset will enable us to reach unprecedented data coverage and will allow us a first insight into the magnitude and trends of shoreline changes on a pan-Arctic scale with locally highly resolved temporal and spatial changes in shoreline dynamics. By comparing consistently derived shoreline change data from all over the Arctic we expect that the trajectory of coastal change in the Arctic becomes evident. A synthesis of some initial results will be presented in the 2020 Arctic Report Card on Arctic Coastal Dynamics. This initiative is an ongoing effort – new data contributions are welcome!
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Lomonosov Moscow State University (Московский государственный университет имени М.В.Ломоносова)
    In:  EPIC3Geography, Environment, Sustainability, Lomonosov Moscow State University (Московский государственный университет имени М.В.Ломоносова), 9(3), pp. 53-73, ISSN: 2071-9388
    Publication Date: 2016-12-09
    Description: Coastal dynamics monitoring on the key areas of oil and gas development at the Barents and Kara Seas has been carried out by Laboratory of Geoecology of the North at the Faculty of Geography (Lomonosov Moscow State University) together with Zubov State Oceanographic Institute (Russian Federal Service for Hydrometeorology and Environmental Monitoring) for more than 30 years. During this period, an up-to-date monitoring technology, which includes direct field observations, remote sensing and numerical methods, has been developed. The results of such investigations are analyzed on the example of the Ural coast of Baydaratskaya Bay, Kara Sea. The dynamics of thermal-abrasion coasts are directly linked with climate and sea ice extent change. A description of how the wind-wave energy flux and the duration of the ice-free period affect the coastal line retreat is provided, along with a method of the wind-wave energy assessment and its results for the Kara Sea region. We have also evaluated the influence of local anthropogenic impacts on the dynamics of the Arctic coasts. As a result, methods of investigations necessary for obtaining the parameters required for the forecast of the retreat of thermoabrasional coasts have been developed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-04
    Description: Observations of coastline retreat using contemporary very high resolution satellite and historical aerial imagery were compared to measurements of open water fraction, summer air temperature, and wind. We analysed seasonal and interannual variations of thawing-induced cliff top retreat (thermo-denudation) and marine abrasion (thermo-abrasion) on Muostakh Island in the southern central Laptev Sea. Geomorphometric analysis revealed that total ground ice content on Muostakh is made up of equal amounts of intrasedimentary and macro ground ice and sums up to 87%, rendering the island particularly susceptible to erosion along the coast, resulting in land loss. Based on topographic reference measurements during field campaigns, we generated digital elevation models using stereophotogrammetry, in order to block-adjust and orthorectify aerial photographs from 1951 and GeoEye, QuickBird, WorldView-1, and WorldView-2 imagery from 2010 to 2013 for change detection. Using sea ice concentration data from the Special Sensor Microwave Imager (SSM/I) and air temperature time series from nearby Tiksi, we calculated the seasonal duration available for thermo-abrasion, expressed as open water days, and for thermo-denudation, based on the number of days with positive mean daily temperatures. Seasonal dynamics of cliff top retreat revealed rapid thermo-denudation rates of −10.2 ± 4.5 m a−1 in mid-summer and thermo-abrasion rates along the coastline of −3.4 ± 2.7 m a−1 on average during the 2010–2013 observation period, currently almost twice as rapid as the mean rate of −1.8 ± 1.3 m a−1 since 1951. Our results showed a close relationship between mean summer air temperature and coastal thermo-erosion rates, in agreement with observations made for various permafrost coastlines different to the East Siberian Ice Complex coasts elsewhere in the Arctic. Seasonality of coastline retreat and interannual variations of environmental factors suggest that an increasing length of thermo-denudation and thermo-abrasion process simultaneity favours greater coastal erosion. Coastal thermo-erosion has reduced the island's area by 0.9 km2 (24%) over the past 62 years but shrank its volume by 28 x 106 m3 (40%), not least because of permafrost thaw subsidence, with the most pronounced with rates of ≥− 11 cm a−1 on yedoma uplands near the island's rapidly eroding northern cape. Recent acceleration in both will halve Muostakh Island's lifetime to less than a century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Russian Academy of Sciences, Institute of Physicochemical and Biological Problems of Soil Science
    In:  EPIC3International conference "Earth Cryology: XXI Century", Pushchino, Russia, 2013-09-29-2013-10-03Pushchino, Russian Academy of Sciences, Institute of Physicochemical and Biological Problems of Soil Science
    Publication Date: 2019-07-17
    Description: Thermo-erosion causes 74% of the continental coastline in the Laptev Sea region that consist of unconsolidated permafrost deposits of Ice Complex type to continuously retreat during the short time window of the subarctic summer. Insights into past and future landscape dynamics depend on understanding the spatially and temporally variable intensities of coastal erosion and its interaction with endogenous and exogenous forcing factors. Coastal thermo-erosion includes two related processes that work temporally and quantitatively differently together. Cliff top erosion (thermo-denudation) and cliff bottom erosion (thermo-abrasion) are coupled, since the entire coastal cliff profile is super-saturated with respect to ice, largely due to thick syngenetic ice wedges. These erosion types result in annual land loss of up to 0.5 hectares per kilometer of coastline and mobilize deep permafrost organic carbon, in response to seasonal environmental changes in the Arctic. Thermo-abrasion and denudation vary in intensity according to the seasonal cycle. Thermo-abrasion is only active during the open water season, while thermo-denudation can proceed throughout the summer. In order to systematically analyze these seasonal thermo-erosion dynamics, we use a set of contemporary very high resolution satellite imagery, repeated geodetic surveys in the field and historical aerial photographs. Particular emphasis in our change detection study was put on stereophotogrammetric digital terrain modelling and subsequent ortho-rectification in order to enable accurate coastline position change measurements over multidecadal to seasonal time scales and to provide current and historical quantifications of planimetric land loss and volumetric coastal erosion. Across a variety of study sites well distributed along more than 200 km of the Laptev Sea mainland coast, observed recent erosion rates for the last 1 to 4 years were almost twice as rapid as the long-term mean of around 2 m per year. Based on normalization of diverse seasonal and interannual erosion rates, our findings at Muostakh Island demonstrate that the currently higher intensities of coastal erosion are controlled at least in part by the increasing open water season and summer air temperatures. We found that under current hydrometeorological conditions, as seasons lengthen and permafrost warms, thermo-abrasion and thermo-denudation are increasingly coupled, increasing the effective mass flux resulting from erosion. Our results also suggest that higher rates were accompanied by a higher frequency of the thermo-erosion cycle that causes coastal cliffs to pass various stages of morphological evolution, which in turn have different impacts on eroded volumes and subsequent mass displacement in the coastal zone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...