GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 81 (2002), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The effects of adenosine on high-voltage-activated calcium channel currents in tiger salamander retinal ganglion cells were investigated in a mini-slice preparation. Adenosine produced a concentration-dependent decrease in the amplitude of calcium channel current with a maximum inhibition of 26%. The effects of adenosine on calcium channel current were both time- and voltage-dependent. In cells dialyzed with GTP-γ-s, adenosine caused a sustained and irreversible inhibition of calcium channel current, suggesting involvement of a GTP-binding protein. The inhibitory effect of adenosine on calcium channel current was blocked by the A1 antagonist 8-cyclopentyltheophylline (DPCPX, 1–10 µm), but not by the A2 antagonist 3-7-dimethyl-1-propargylxanthine (DMPX, 10 µm), and was mimicked by the A1 agonist N 6-cyclohexyladenosine (CHA, 1 µm) but not by the A2 agonist 5′-(N-cyclopropyl) carbox-amidoadenosine (CPCA, 1 µm). Adenosine's inhibition of calcium channel current was not affected by the L-type calcium channel blocker nifedipine (5 µm). However, adenosine's inhibition of calcium channel current was reduced to approximately 10% after application of ω-conotoxin GVIA (1 µm), suggesting that adenosine inhibits N-type calcium channels. These results show that adenosine acts on an A1 adenosine receptor subtype via a G protein-coupled pathway to inhibit the component of calcium channel current carried in N-type calcium channels.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 61 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The possible existence of a dopamine D2 receptor-mediated regulation of dopamine release was investigated in the goldfish retina. Isolated retinas were preloaded with [3H]dopamine and superfused with D2 dopamine receptor agonists or antagonists to determine if there was an effect on [3H]dopamine release. The D2 receptor antagonist sulpiride increased both baseline [3H]- dopamine release and [3H]dopamine release induced by an increase in extracellular potassium concentration. The D2 receptor agonists LY-171555 and RU-24213 did not reduce baseline [3H]dopamine release but completely inhibited [3H]dopamine release induced by an increase in [K±]o. This action of the D2 agonists was blocked by sulpiride. These studies demonstrate the existence of D2 receptor, possibly autoreceptor, regulation of dopamine release in the teleost retina.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Journal of neurochemistry 74 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The objective of this study was to investigate the effects of taurine on cone retinomotor movements and the responses of cone-driven horizontal cells in dark-adapted teleost retina. In isolated goldfish retina preparations maintained in the dark, cones spontaneously contracted, and the responses of horizontal cells were suppressed. Addition of 5 mM taurine to the physiological solution blocked the spontaneous contraction of cones in the dark but did not block the dark-suppression of horizontal cell responses. These results indicate that the mechanism that leads to horizontal cell dark suppression is not sensitive to taurine. Although both cone retinomotor position and horizontal cell responsiveness are known to be modulated by dopamine, the present results do not support the hypothesis that taurine inhibits dopamine release in the dark because only spontaneous cone contraction was affected by taurine. These results also indicate that spontaneous cone contraction in the dark is not the cause of horizontal cell dark suppression because, in the presence of taurine, cones were elongated yet horizontal cell responses were still suppressed. Consequently, these results make it clear that horizontal cell dark suppression is not an artifact produced by incubating isolated teleost retina preparations in taurine-free physiological solution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Using optical imaging of retinal ganglion cell (RGC) calcium dynamics in living intact retinal wholemount preparations, we tested whether RGCs in an experimental rat glaucoma model were more sensitive to exogenously applied glutamate as a result of deficient glutamate clearance mechanisms. In contrast to post-natal rat RGCs in purified cultures, in which the calcium influx induced by 200 μm NMDA and 10 μm glutamate was approximately equivalent, application of up to 500 μm glutamate did not affect calcium levels in RGCs in retinal wholemounts, even though the RGCs responded to 200 μm NMDA. Glutamate (500 μm) did elicit a RGC calcium response in retinal wholemounts when glutamate transporters were inhibited pharmacologically with DL-threo-β-benzyloxyaspartate, confirming the presence of glutamate clearance mechanisms in this intact retina preparation. The effect of glutamate was then assessed on retinas from rats with chronically elevated intraocular pressure in one eye, produced by the injection of hypertonic saline into an episcleral vein. Application of up to 500 μm glutamate had no effect on RGC calcium levels, while millimolar concentrations of glutamate induced a calcium signal in RGCs that was indistinguishable from that in fellow control retinas. Therefore, there was no evidence for a global defect in glutamate uptake in this rat model of experimental glaucoma. Imaging glutamatergic calcium dynamics of RGCs in retinal wholemounts represents a novel methodology to probe glutamate transporter function and dysfunction in an intact CNS tissue system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...