GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The inhibitory effects of botulinum neurotoxins types A and B on Ca2+-dependent evoked release of [3H]noradrenaline from rat cerebrocortical synaptosomes were compared and their molecular basis investigated. A23187, a Ca2+ ionophore, proved more efficacious in reversing the blockade produced by type A than that by B, whereas the actions of neither were changed by increasing intraterminal cyclic GMP levels using 8-bromo-cyclic GMP or nitroprusside. Disruption of the actin-based cytoskeleton with cytochalasin D did not alter the inhibition seen subsequently with either toxin. However, prior disassembly of microtubules with colchicine, nocodazole, or griseofulvin reduced the potency of type B toxin, but not that of type A toxin; stabilization of the microtubules with taxol counteracted this effect of colchicine. Because colchicine treatment of synaptosomes did not interfere with the measurable binding of type B toxin or its apparent uptake, it appears to act intracellularly. Collectively, these data suggest that botulinum neurotoxins types A and B inactivate transmitter release by interaction at different sites in the process. Based on the consistent results observed with four different drugs known to affect selectively microtubules, their involvement in the action of the type B neurotoxin is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Although botulinum neurotoxin (BoNT) types A and B and tetanus toxin (TeTx) are specific inhibitors of transmitter release whose light chains contain a zinc-binding motif characteristic of metalloendoproteases, only the latter two proteolyse synaptobrevin. Chelation of zinc or its readdition at high concentration hindered blockade of neuromuscular transmission by BoNT/A and B, indicating that type A also acts via a zinc-dependent mechanism. Such treatments prevented proteolysis of synaptobrevin II in rat brain synaptic vesicles by BoNT/B and TeTx but only the activity of the latter was antagonised appreciably by ASQFETS, a peptide spanning their cleavage site. The toxins’ neuroparalytic activities were attenuated by phosphoramidon or captopril, inhibitors of certain zinc requiring proteases. However, these agents were ineffective in reducing the toxins’ degradation of synaptobrevin except that a high concentration of captopril partially blocked the activity of TeTx but not BoNT/B, as also found for these drugs when tested on synaptosomal noradrenaline release. These various criteria establish that a zinc-dependent protease activity underlies the neurotoxicity of BoNT/A, a finding confirmed at motor nerve endings for type B and TeTx. Moreover, the low potencies of captopril and phosphoramidon in counteracting the toxins’ effects necessitate the design of improved inhibitors for possible use in the clinical treatment of tetanus or botulism.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 50 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Under optimised conditions for intoxication, botulinum neurotoxin type A was shown to inhibit ∼90% of Ca2+-dependent K+-evoked release of [3H]acetylcholine, [3H]noradrenaline, and [3H]dopamine from rat cerebrocortical synaptosomes; cholinergic terminals were most susceptible. In each case, the dose-response curve for the neurotoxin was extended, with about 50% of evoked release being inhibited at ∼10 nM whereas 200 nM was required for the maximal blockade. This may suggest some heterogeneity in the release process. The action of the toxin was time and temperature dependent and appeared to involve binding and sequestration steps prior to blockade of release. The neurotoxin failed to exert any effect on synaptosomal integrity or on Ca2+-independent release of the transmitters tested; it produced only minimal changes in neurotransmitter uptake although small secondary effects were detected with cholinergic terminals. Blockade by the neurotoxin of Ca2+-dependent resting release of transmitter was apparent; Sr2+, Ba2+, or high concentrations of Ca2+ restored the resting release of 3H-catecholamine but not [3H]acetylcholine. Interestingly, none of the latter conditions or 4-aminopyridine could reverse the toxin-induced blockade of evoked release. This lack of specificity in its action on synaptosomes. and other published findings, lead to the conclusion that toxin-sensitive component(s) exist in all nerve terminals that are concerned with transmitter release.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 68 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Tetanus toxin (TeTX) has been demonstrated to inhibit transmitter release by two mechanisms: Zn2+-dependent proteolytic cleavage of synaptobrevin and activation of a neuronal transglutaminase. Herein, attenuation of TeTX-induced blockade of noradrenaline release from synaptosomes was achieved by prior disassembly of microfilaments with cytochalasin D or breakdown of microtubules by colchicine or nocodazole. These drugs and monodansylcadaverine, a transglutaminase inhibitor, displayed some additivity in antagonizing the inhibitory effect of the toxin on synaptosomal transmitter release; as none of them reduced synaptobrevin cleavage, all appear to work independently of the toxin's proteolytic action. Prior stabilization of microtubules with taxol prevented the antagonism seen with colchicine, highlighting that this cytoskeletal component is the locus of the effect of colchicine. Replacement of Ca2+ with Ba2+ caused disappearance of the fraction of evoked secretion whose inhibition by TeTX is reliant on polymerized actin but did not alter the blockade by toxin that is dependent on microtubules. Two temporally distinguished phases of release were reduced by TeTX, and colchicine lessened its effects on both. Blockade of the fast phase (≤10 s) of secretion by TeTX was unaffected by cytochalasin D, but it clearly antagonized the toxin-induced inhibition of the slow (10-s to ≥5-min) component; it is notable that such antagonism was accentuated during a second bout of evoked release. These findings are consistent with sustained release requiring dissociation of synaptic vesicles from the microfilaments, a step that seems to be perturbed by TeTX.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 74 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Treatment of rat cerebrocortical synaptosomes with botulinum toxin types E and C1 or tetanus toxin removed the majority of intact SNAP-25, syntaxin 1A/1B, and synaptobrevin and diminished Ca2+-dependent K+ depolarization-induced noradrenaline secretion. With botulinum toxin type E, 〈10% of intact SNAP-25 remained and K+-evoked release of glutamate and GABA was inhibited. The large component of noradrenaline release evoked within 120 s by inclusion of the Ca2+ ionophore A23187 with the K+ stimulus was also attenuated by these toxins; additionally, botulinium neurotoxin type E blocked the first 60 s of ionophore-induced GABA and glutamate exocytosis. However, exposure to A23187 for longer periods induced a phase of secretion nonsusceptible to any of these toxins (〉120 s for noradrenaline; 〉60 s for glutamate or GABA). Most of this late phase of release represented exocytosis because of its Ca2+ dependency, ATP requirement, and sensitivity to a phosphatidylinositol 4-kinase inhibitor. Based on these collective findings, we suggest that the ionophore-induced elevation of [Ca2+]i culminates in the disassembly of complexes containing nonproteolyzed SNAP receptors protected from the toxins that can then contribute to neuroexocytosis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] We report here the first three-dimensional structure of α-latrotoxin, a black widow spider neurotoxin, which forms membrane pores and stimulates secretion in the presence of divalent cations. We discovered that α-latrotoxin exists in two oligomeric forms: it is dimeric in EDTA but ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...