GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 33 (1994), S. 10487-10493 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 165 (1970), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 22 (1983), S. 624-627 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology and Plant Molecular Biology 50 (1999), S. 601-639 
    ISSN: 1040-2519
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Photoreduction of dioxygen in photosystem I (PSI) of chloroplasts generates superoxide radicals as the primary product. In intact chloroplasts, the superoxide and the hydrogen peroxide produced via the disproportionation of superoxide are so rapidly scavenged at the site of their generation that the active oxygens do not inactivate the PSI complex, the stromal enzymes, or the scavenging system itself. The overall reaction for scavenging of active oxygens is the photoreduction of dioxygen to water via superoxide and hydrogen peroxide in PSI by the electrons derived from water in PSII, and the water-water cycle is proposed for these sequences. An overview is given of the molecular mechanism of the water-water cycle and microcompartmentalization of the enzymes participating in it. Whenever the water-water cycle operates properly for scavenging of active oxygens in chloroplasts, it also effectively dissipates excess excitation energy under environmental stress. The dual functions of the water-water cycle for protection from photoinihibition are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 85 (1992), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Ascorbate peroxidase is a hydrogen peroxide-scavenging enzyme that is specific to plants and algae and is indispensable to protect chloroplasts and other cell constituents from damage by hydrogen peroxide and hydroxyl radicals produced from it. In this review, first, the participation of ascorbate peroxidase in the scavenging of hydrogen peroxide in chloroplasts is briefly described. Subsequently, the phylogenic distribution of ascorbate peroxidase in relation to other hydrogen peroxide-scavenging peroxidases using glutathione, NADH and cytochrome c is summarized. Chloroplastic and cytosolic isozymes of ascorbate peroxidase have been found, and show some differences in enzymatic properties. The basic properties of ascorbate peroxidases, however, are very different from those of the guaiacol peroxidases so far isolated from plant tissues. Amino acid sequence and other molecular properties indicate that ascorbate peroxidase resembles cytochrome c peroxidase from fungi rather than guaiacol peroxidase from plants, and it is proposed that the plant and yeast hydrogen peroxide-scavenging peroxidases have the same ancestor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Active oxygen ; Isoenzyme ; Mitochondrion ; Oryza ; Oxygen deficiency ; Superoxide dismutase ; Plastid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in activities and levels of superoxide dismutase (SOD, EC 1.15.1.1) isoenzymes were studied during air adaptation of submerged rice (Oryza sativa L.) seedlings. Seeds were germinated for 6 d in the dark under water (submerged), and then for another day in air (air-adapted). For a control, seeds were germinated for 6 d throughout in air (aerobic). Staining for activity of SOD of shoot extracts showed a total of five major distinct forms of SOD: one mitochondrial Mn enzyme (mtSOD) and four CuZn enzymes, one of which was plastidic (plSOD) and the other three cytosolic (cytSOD). Activity of plSOD was much lower in submerged seedlings than in aerobic controls and increased after exposure to air. In contrast, mtSOD activity in submerged seedlings was as high as that found in aerobic controls, and did not increase upon exposure to air. One of the cytSODs showed responses similar to those of plSOD. The activities of another two cytSODs were slightly lower in submerged seedlings than those in aerobic controls, but decreased after 24 h of air adaptation. Western blot analysis revealed that these changes in activities of SODs are due to changes in the levels of their enzyme proteins. We also followed changes in the levels of cytochrome c and ferredoxin-NADP+ reductase (EC 1.6.99.4) as indices of the development of mitochondria and plastids, respectively. Organelle SODs were always present at higher levels than would be expected in view of the development of the electron-transport systems of the corresponding organelles during submergence and the subsequent air-adaptation period.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5176
    Keywords: CO2 ; growth ; pH ; photosynthesis ; Porphyra yezoensis ; red alga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leafy thalli of the red algaPorphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO2. It was found that the higher the CO2 concentration, the faster the growth of the thalli. Aeration with elevated CO2 lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO 3 − to OH− and CO2 proceeded much faster than the dissociation of hydrated CO2 releasing H+. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon (DIC, CO2 + HCO 3 − + CO 3 − ). It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO2 by marine algae is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5176
    Keywords: CO2 ; growth ; pH ; photosynthesis ; Porphyra yezoensis ; red alga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Leafy thalli of the red algaPorphyra yezoensis Ueda, initiated from conchospores released from free-living conchocelis, were cultured using aeration with high CO2. It was found that the higher the CO2 concentration, the faster the growth of the thalli. Aeration with elevated CO2 lowered pH in dark, but raised pH remarkably in light with the thalli, because the photosynthetic conversion of HCO 3 − to OH− and CO2 proceeded much faster than the dissociation of hydrated CO2 releasing H+. Photosynthesis of the alga was found to be enhanced in the seawater of elevated dissolved inorganic carbon (DIC, CO2 + HCO 3 − + CO 3 − ). It is concluded that the increased pH in the light resulted in the increase of DIC in the culture media, thus enhancing photosynthesis and growth. The relevance of the results to removal of atmospheric CO2 by marine algae is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5079
    Keywords: superoxide protonation ; Mehler reaction ; ascorbate peroxidase ; chlorophyll fluorescence ; quenching analysis ; cyclic PS I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The pH-dependence of light-driven O2-reduction in intact spinach chloroplasts is studied by means of chlorophyll fluorescence quenching analysis and polarographic O2-uptake measurements. Most experiments are carried out in presence of KCN, which blocks activities of Calvin cycle, ascorbate peroxidase and superoxide dismutase. pH is varied by equilibration with external buffers in presence of nigericin. Vastly different pH-optima for O2-dependent electron flow are observed in the presence and absence of the redox catalyst methyl viologen. Both fluorescence quenching analysis and O2-uptake reveal a distinct pH 5 optimum of O2-reduction in the absence of methyl viologen. In the presence of this catalyst, O2-reduction is favoured in the alkaline region, with an optimum around pH 8, similar to other types of Hill reaction. It is suggested that in the absence of methyl viologen the extent of irreversibility of O2-reduction is determined by the rate of superoxide protonation. This implies that O2-reduction takes place within the aprotic phase of the thylakoid membrane and that superoxide-reoxidation via oxidized PS I donors competes with protonation. Superoxide protonation is proposed to occur at the internal surface of the thylakoid membrane. There is no competition between superoxide reoxidation and protonation when in the presence of methyl viologen the site of O2-reduction is shifted into the protic stroma phase. In confirmation of this interpretation, fluorescence measurements in the absence of KCN reveal, that non-catalysed O2-dependent electron flow is unique in beingstimulated by the transthylakoidal pH-gradient. On the basis of these findings a major regulatory role of O2-dependent electron flow under excess light conditions is postulated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...