GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: Ocean warming (OW) and acidification (OA) are key features of global change and are predicted to have negative consequences for marine species and ecosystems. At a smaller scale increasing oil and gas activities at northern high latitudes could lead to greater risk of petroleum pollution, potentially exacerbating the effects of such global stressors. However, knowledge of combined effects is limited. This study employed a scenario-based, collapsed design to investigate the impact of one local acute stressor (North Sea crude oil) and two chronic global drivers (pH for OA and temperature for OW), alone or in combination on aspects of the biology of larval stages of two key invertebrates: the northern shrimp (Pandalus borealis) and the green sea urchin (Strongylocentrotus droebachiensis). Both local and global drivers had negative effects on survival, development and growth of the larval stages. These effects were species- and stage-dependent. No statistical interactions were observed between local and global drivers and the combined effects of the two drivers were approximately equal to the sum of their separate effects. This study highlights the importance of adjusting regulation associated with oil spill prevention to maximize the resilience of marine organisms to predicted future global conditions.
    Keywords: Abnormality; Abnormality, standard deviation; Activity; Activity, standard deviation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arthropoda; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Echinodermata; Experiment; Experiment duration; Feeding rate; Feeding rate, standard deviation; Feeding rate per individual; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Larvae, mortality, daily; Larvae, swimming; Length; Length, standard deviation; Mortality, standard deviation; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Organic toxins; Oxygen consumption, standard deviation; Oxygen consumption per body length; Oxygen consumption per mass; Pandalus borealis; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Salinity; Single species; Species; Strongylocentrotus droebachiensis; Swimming activity, standard deviation; Symmetry index; Symmetry index, standard deviation; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 416 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chan, Kit Yu Karen; Grünbaum, Daniel; Arnberg, Maj; Thorndyke, Mike; Dupont, Sam (2012): Ocean acidification induces budding in larval sea urchins. Marine Biology, 160(8), 2129-2135, https://doi.org/10.1007/s00227-012-2103-6
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA), the reduction of ocean pH due to hydration of atmospheric CO2, is known to affect growth and survival of marine invertebrate larvae. Survival and transport of vulnerable planktonic larval stages play important roles in determining population dynamics and community structures in coastal ecosystems. Here, we show that larvae of the purple urchin, Strongylocentrotus purpuratus, underwent high-frequency budding (release of blastula-like particles) when exposed to elevated pCO2 level (〉700 µatm). Budding was observed in 〉50 % of the population and was synchronized over short periods of time (~24 h), suggesting this phenomenon may be previously overlooked. Although budding can be a mechanism through which larval echinoids asexually reproduce, here, the released buds did not develop into viable clones. OA-induced budding and the associated reduction in larval size suggest new hypotheses regarding physiological and ecological tradeoffs between short-term benefits (e.g. metabolic savings and predation escape) and long-term costs (e.g. tissue loss and delayed development) in the face of climate change.
    Keywords: Age; Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Aragonite saturation state, standard error; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Echinodermata; ECO2; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Particle density, normalized; Particle density, standard error; Percentage; pH; pH, standard error; Potentiometric; Reproduction; Salinity; Single species; Species; Stronglyocentrotus purpuratus; Sub-seabed CO2 Storage: Impact on Marine Ecosystems; Temperate; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 2643 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bechmann, Renée Katrin; Taban, Ingrid Christina; Westerlund, Stig; Godal, Brit Fjone; Arnberg, Maj; Vingen, Sjur; Ingvarsdottir, Anna; Baussant, Thierry (2011): Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). Journal of Toxicology and Environmental Health-Part A-Current Issues, 74(7-9), 424-438, https://doi.org/10.1080/15287394.2011.550460
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; CT-probe Aqua TROLL 100; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Interpretation from literature (PKDB); Laboratory experiment; Measured; Microscopy; Mollusca; Mytilus edulis; Mytilus edulis, D-larvae; Mytilus edulis, larvae, area; Mytilus edulis, larvae, digestion stage I; Mytilus edulis, larvae, digestion stage II; Mytilus edulis, larvae, perimeter; Mytilus edulis, larvae, settled; Mytilus edulis, larvae, size; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; pH meter (Orion); Replicates; Salinity; Salinity, standard deviation; Single species; Species; Temperate; Temperature, standard deviation; Temperature, water; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 28123 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bechmann, Renée Katrin; Taban, Ingrid Christina; Westerlund, Stig; Godal, Brit Fjone; Arnberg, Maj; Vingen, Sjur; Ingvarsdottir, Anna; Baussant, Thierry (2011): Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). Journal of Toxicology and Environmental Health-Part A-Current Issues, 74(7-9), 424-438, https://doi.org/10.1080/15287394.2011.550460
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Arthropoda; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; CT-probe Aqua TROLL 100; Development; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Interpretation from literature (PKDB); Laboratory experiment; Measured; Mortality; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Pandalus borealis; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; pH meter (Orion); Replicates; Salinity; Salinity, standard deviation; Single species; Species; Temperate; Temperature, standard deviation; Temperature, water; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 17712 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bechmann, Renée Katrin; Lyng, Emily; Westerlund, Stig; Bamber, Shaw D; Berry, Mark; Arnberg, Maj; Kringstad, Alfhild; Calosi, Piero; Seear, Paul J (2018): Early life stages of Northern shrimp (Pandalus borealis) are sensitive to fish feed containing the anti-parasitic drug diflubenzuron. Aquatic Toxicology, 198, 82-91, https://doi.org/10.1016/j.aquatox.2018.02.021
    Publication Date: 2024-03-15
    Description: Increasing use of fish feed containing the chitin synthesis inhibiting anti-parasitic drug diflubenzuron (DFB) in salmon aquaculture has raised concerns over its impact on coastal ecosystems. Larvae of Northern shrimp (Pandalus borealis) were exposed to DFB medicated feed under Control conditions (7.0 °C, pH 8.0) and under Ocean Acidification and Warming conditions (OAW, 9.5 °C and pH 7.6). Two weeks' exposure to DFB medicated feed caused significantly increased mortality. The effect of OAW and DFB on mortality of shrimp larvae was additive; 10% mortality in Control, 35% in OAW, 66% in DFB and 92% in OAW + DFB. In OAW + DFB feeding and swimming activity were reduced for stage II larvae and none of the surviving larvae developed to stage IV. Two genes involved in feeding (GAPDH and PRLP) and one gene involved in moulting (DD9B) were significantly downregulated in larvae exposed to OAW + DFB relative to the Control. Due to a shorter intermoult period under OAW conditions, the OAW + DFB larvae were exposed throughout two instead of one critical pre-moult period. This may explain the more serious sub-lethal effects for OAW + DFB than DFB larvae. A single day exposure at 4 days after hatching did not affect DFB larvae, but high mortality was observed for OAW + DFB larvae, possibly because they were exposed closer to moulting. High mortality of shrimp larvae exposed to DFB medicated feed, indicates that the use of DFB in salmon aquaculture is a threat to crustacean zooplankton.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Arthropoda; Behaviour; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; EXP; Experiment; Feeding rate per individual; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression, fold change, relative; Gene expression, fold change, relative, standard error; Gene expression (incl. proteomics); Gene name; Hillefjord; Individuals; Laboratory experiment; Mortality/Survival; North Atlantic; Number; OA-ICC; Ocean Acidification International Coordination Centre; Other; Pandalus borealis; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Percentage; Percentage, standard deviation; pH; Registration number of species; Salinity; Single species; Species; Stage; Swimming activity, beam breaks per hour; Swimming activity, standard deviation; Temperate; Temperature; Temperature, water; Time in days; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 3888 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-19
    Description: Ocean acidification (OA), the reduction of ocean pH due to hydration of atmospheric CO2, is known to affect growth and survival of marine invertebrate larvae. Survival and transport of vulnerable planktonic larval stages play important roles in determining population dynamics and community structures in coastal ecosystems. Here, we show that larvae of the purple urchin, Strongylocentrotus purpuratus, underwent high-frequency budding (release of blastula-like particles) when exposed to elevated pCO2 level (〉700 μatm). Budding was observed in 〉50 % of the population and was synchronized over short periods of time (~24 h), suggesting this phenomenon may be previously overlooked. Although budding can be a mechanism through which larval echinoids asexually reproduce, here, the released buds did not develop into viable clones. OA-induced budding and the associated reduction in larval size suggest new hypotheses regarding physiological and ecological tradeoffs between short-term benefits (e.g. metabolic savings and predation escape) and long-term costs (e.g. tissue loss and delayed development) in the face of climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...