GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 27 (1993), S. 857-865 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-20
    Description: Background: Female sex workers (FSWs) are a high-risk population for HIV. Correct and consistent use of condoms is the most effective measure for reducing transmission of HIV. Lao PDR is a low HIV-prevalence country, but FSWs have a relatively high HIV prevalence. To be able to make recommendations for condom promotion interventions in Lao PDR it is important to know more about the context specific situation. This study looked at reasons for and associated factors of consistent condom use among FSWs. Methods: A cross-sectional survey among 258 FSWs in Kaysone Phomvihan district in Savannakhet province was performed. Results: Almost all FSWs had enough condoms (94 %), condoms always available (100 %) and could always afford condoms (92 %). Consistent condom use was 97% with non-regular partners and 60% with regular partners. Almost all respondents (95 %) had received information about condoms from the drop-in centre. Stated reasons for consistent condom use were prevention of HIV (94 %), STIs (88 %) and pregnancy (87 %). Most reasons for inconsistent condom use were related to partners not wanting to use condoms because of reduced sexual pleasure. Some FSWs reported that they were physically abused and forced not to use condoms. Shorter time in sex work, higher education and FSW not having regular partners were significantly associated with consistent condom use. Conclusions: Consistent condom use was very high with non-regular partners, but less frequent with regular partners. The main reason for inconsistent condom use was that the partner did not want to use a condom. Associated factors for consistent condom use were not having regular partners, higher education and shorter time in sex work. Condom promotion programs should include both FSWs and their partners and female condoms should be included in condom intervention efforts. Future studies should investigate the validity of self-reported sexual practices, partners’ reasons for inconsistent condom use, risk of violence in sex work and why shorter time in sex work is associated with consistent condom use.
    Electronic ISSN: 1472-6874
    Topics: Medicine
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-03
    Description: In order to assess the global evolution of aerosol parameters affecting climate change, a long-term trend analyses of aerosol optical properties were performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann-Kendall (MK) statistical test associated with several prewhitening methods and with the Sen’s slope were used as main trend analysis methods. Comparisons with General Least Mean Square associated with Autoregressive Bootstrap (GLS/ARB) and with standard Least Mean Square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficients trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficients time series also exhibit primarily decreasing trends. For single scattering albedo, 52% of the sites exhibit statistically significant positive trends, mostly in Asia, Eastern/Northern Europe and Arctic, 18% of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 30% of sites have trends, which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10 year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10 year trends are primarily found for earlier periods (10 year trends ending in 2010-2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10 year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10 year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10 year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2010-2011 for all stations in the eastern and central US. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage enables a better global view of potential aerosol effects on climate changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-14
    Description: Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, ver- tically resolved measurements of the particle light scatter- ing coefficient (σsp ) and light absorption coefficient (σap ) in the springtime Arctic atmosphere are infrequent, espe- cially measurements at latitudes at or above 80◦ N. Here, re- lationships among vertically distributed aerosol optical prop- erties (σap, σsp and single scattering albedo or SSA), par- ticle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4◦ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground- based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing Sys- tem (GEOS) model, GEOS-Chem, coupled with the TwO- Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem–TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm−1, which represent 98 % of the observed σsp, be- cause the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g−1, the average BC mass ab- sorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two aver- aged modelled MAC values (13.6 and 9.1 m2 g−1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the obser- vations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and σap/2 and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Me- dian values of the measured σap, rBC and the organic com- ponent of particles all increase by a factor of 1.8 ± 0.1, going from near-surface to 750 hPa, and values higher than the sur- face persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900 and 600 hPa. The dif- ferences between modelled and observed optical properties follow the same trend as the differences between the mod- elled and observed concentrations of the carbonaceous com- ponents (black and organic). Model-observation discrepan- cies may be mostly due to the modelled ejection of biomass burning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of σsp 〈 15 Mm−1. The large uncertainties in measuring optical properties and BC, and the large differ- ences between measured and modelled values here and in the literature, argue for improved measurements of BC and light absorption by BC and more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Abstract. Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50 % and 60 % were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (∼ 102 cm−3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day–night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (∼ 103–104 cm−3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (∼ 102–103 cm−3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of ∼ 10 to 1000 cm−3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol–cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Abstract. Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-07
    Description: Light-absorbing aerosols (LAAs) are short-lived climate forcers with a significant impact on Earth's radiative balance. LAAs include dust aerosols, black carbon (BC) and organic light-absorbing carbonaceous aerosol (collectively termed brown carbon, BrC), which have also been proven to be highly toxic. In this study, aerosol absorption at five wavelengths (ranging from ultraviolet to infrared) was monitored continuously using filter-based photometers during two winter seasons in 2020 and 2021 in the city of Modena (southern central Po Valley, northern Italy), at two regulatory air quality monitoring sites, along with other pollutants (coarse particulate matter, PM10; fine particulate matter, PM2.5; O3; NO; NO2; and C6H6) and the vehicular traffic rate. The aerosol optical depth (AOD) and other column aerosol optical properties were concurrently monitored at four wavelengths by an AErosol RObotic NETwork (AERONET) sun photometer under urban background conditions within Modena. In situ absorption levels were apportioned to both sources (fossil fuel and biomass burning) and species (BC and BrC), while columnar absorption was apportioned to BC, BrC and mineral dust. The combined analysis of the atmospheric aerosol and gas measurements and of the meteorological conditions (in situ and from the ERA5 reanalysis) identified the location of potential urban sources of BC and BrC, most likely related to traffic and biomass burning. In situ data show different diurnal/weekly patterns for BrC from biomass burning and BC from traffic, with minor differences between the background and the urban traffic conditions. AERONET version 3 absorption aerosol optical depth (AAOD) retrievals at four wavelengths allowed the estimation of the absorptive direct radiative effect due to LAAs over the same period under the reasonable assumption that the AOD signal is concentrated within the mixing layer. AERONET retrievals showed a modest correlation of columnar absorption with planetary boundary layer (PBL)-scaled in situ observations, although the correlation improved significantly during a desert dust transport event that affected both in situ aerosol and columnar absorption, particularly in the blue spectrum range. A low correlation occurred between the contribution of BrC to aerosol absorption for the in situ and the columnar observations, with the BrC contribution being generally larger for in situ observations. Finally, evidence of a highly layered atmosphere during the study period, featuring significant spatial mixing and modest vertical mixing, was shown by ERA5-based atmospheric temperature profiles and by the large correlation of concurrent AERONET AOD retrievals in Modena and in Ispra (on the northwestern side of the Po Valley, ca. 225 km from Modena).
    Description: Published
    Description: 14841–14869
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...