GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 4112-4114 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Porous silicon is excited using near-infrared femtosecond pulsed and continuous wave radiation at an average intensity of ∼106 W/cm2 (8×1010 W/cm2 peak intensity in pulsed mode). Our results demonstrate the presence of micron-size regions for which the intensity of the photoluminescence has a highly nonlinear threshold, rising by several orders of magnitude near this incident intensity for both the pulsed and continuous wave cases. These results are discussed in terms of stimulated emission from quantum confinement engineered intrinsic Si–Si radiative traps in ultrasmall nanocrystallites, populated following two-photon absorption. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 1857-1859 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We dispersed electrochemical etched Si into a colloid of ultrasmall blue luminescent nanoparticles, observable with the naked eye, in room light. We use two-photon near-infrared femtosecond excitation at 780 nm to record the fluctuating time series of the luminescence, and determine the number density, brightness, and size of diffusing fluorescent particles. The luminescence efficiency of particles is high enough such that we are able to detect a single particle, in a focal volume, of 1 pcm3. The measurements yield a particle size of 1 nm, consistent with direct imaging by transmission electron microscopy. They also yield an excitation efficiency under two-photon excitation two to threefold larger than that of fluorescein. Detection of single particles paves the way for their use as labels in biosensing applications. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 1131-1133 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We dispersed electrochemical etched Si into a colloid of ultrabright blue luminescent nanoparticles (1 nm in diameter) and reconstituted it into films or microcrystallites. When the film is excited by a near-infrared two-photon process at 780 nm, the emission exhibits a sharp threshold near 106 W/cm2, rising by many orders of magnitude, beyond which a low power dependence sets in. Under some conditions, spontaneous recrystallization forms crystals of smooth shape from which we observe collimated beam emission, pointing to very large gain coefficients. The results are discussed in terms of population inversion, produced by quantum tunneling or/and thermal activation, and stimulated emission in the quantum confinement-engineered Si–Si phase found only on ultrasmall Si nanoparticles. The Si–Si phase model provides gain coefficients as large as 103–105 cm−1. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 77 (2000), S. 4086-4088 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We dispersed crystalline Si into a colloid of ultrasmall nano particles (∼1 nm), and reconstituted it into microcrystallites films on device-quality Si. The film is excited by near-infrared femtosecond two-photon process in the range 765–835 nm, with incident average power in the range 15–70 mW, focused to ∼1 μm. We have observed strong radiation at half the wavelength of the incident beam. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry. Ionic vibration of or/and excitonic self-trapping on novel radiative Si–Si dimer phase, found only in ultrasmall nanoparticles, are suggested as a basic mechanism for inducing anharmonicity that breaks the centrosymmetry. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...