GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 7300–7315, doi:10.1002/2015JC011093.
    Description: Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10–30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ∼70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.
    Description: Funded by Gulf of Mexico Research Initiative
    Description: 2016-05-09
    Keywords: Deepwater Horizon disaster ; Comprehensive gas chromatography with vacuum ultraviolet ionization mass spectrometry ; Evaporative oil weathering ; Secondary organic aerosol
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6745-6754, doi:10.1029/2019GL082867.
    Description: Although photochemical oxidation is an environmental process that drives organic carbon (OC) cycling, its quantitative detection remains analytically challenging. Here, we use samples from the Deepwater Horizon oil spill to test the hypothesis that the stable oxygen isotope composition of oil (δ18OOil) is a sensitive marker for photochemical oxidation. In less than one‐week, δ18OOil increased from −0.6 to 7.2‰, a shift representing ~25% of the δ18OOC dynamic range observed in nature. By accounting for different oxygen sources (H2O or O2) and kinetic isotopic fractionation of photochemically incorporated O2, which was −9‰ for a wide range of OC sources, a mass balance was established for the surface oil's elemental oxygen content and δ18O. This δ18O‐based approach provides novel insights into the sources and pathways of hydrocarbon photo‐oxidation, thereby improving our understanding of the fate and transport of petroleum hydrocarbons in sunlit waters, and our capacity to respond effectively to future spills.
    Description: We thank Robert Ricker and Greg Baker (NOAA) for helping secure the oil residues, James Payne (Payne Environmental Consultants, Inc.) for collecting many of the surface oil residues, Joy Matthews (UC Davis) for exceptional assistance in preparing and analyzing the oil residues for oxygen content and isotopes, Hank Levi and Art Gatenby at CSC Scientific Company for assistance with the water content measurements, Robyn Comny (US EPA) for providing the Alaska North Slope oil, and Rose Cory (UMich) for discussions about our findings. Special thanks to John Hayes who provided constructive feedback on a preliminary version of this dataset prior to his passing in February of 2017. We thank Alex Sessions (CalTech) for his constructive feedback during the review process. This work was supported, in part, by National Science Foundation grants RAPID OCE‐1043976 (CMR), OCE‐1333148 (CMR), OCE‐1333026 (CMS), OCE‐1333162 (DLV), OCE‐1841092 (CPW), NASA NESSF NNX15AR62H (KMS), the Gulf of Mexico Research Initiative grants ‐ 015, SA 16‐30, and DEEP‐C consortium, a fellowship through the Hansewissenschaftskolleg (Institute for Advanced Studies) to SDW, and assistant scientist salary support from the Frank and Lisina Hoch Endowed Fund (CPW).
    Description: 2019-11-30
    Keywords: Petroleum hydrocarbons ; Photochemical oxidation ; Deepwater Horizon ; Stable oxygen isotopes ; Organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gosselin, K. M., Nelson, R. K., Spivak, A. C., Sylva, S. P., Van Mooy, B. A. S., Aeppli, C., Sharpless, C. M., O’Neil, G. W., Arrington, E. C., Reddy, C. M., & Valentine, D. L. Production of two highly abundant 2-methyl-branched fatty acids by blooms of the globally significant marine cyanobacteria Trichodesmium erythraeum. ACS Omega, 6(35), (2021): 22803–22810, https://doi.org/10.1021/acsomega.1c03196.
    Description: The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.
    Description: This work was funded with grants from the National Science Foundation grants OCE-1333148, OCE-1333162, and OCE-1756254 and the Woods Hole Oceanographic Institution (IR&D). GCxGC analysis made possible by WHOI’s Investment in Science Fund.
    Keywords: Lipids ; Alkyls ; Bacteria ; Genetics ; Chromatography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lemkau, K. L., Reddy, C. M., Carmichael, C. A., Aeppli, C., Swarthout, R. F., & White, H. K. Hurricane Isaac brings more than oil ashore: Characteristics of beach deposits following the Deepwater Horizon spill. Plos One, 14(3), (2019):e0213464, doi:10.1371/journal.pone.0213464.
    Description: Prior to Hurricane Isaac making landfall along the Gulf of Mexico coast in August 2012, local and state officials were concerned that the hurricane would mobilize submerged oiled-materials from the Deepwater Horizon (DWH) spill. In this study, we investigated materials washed ashore following the hurricane to determine if it affected the chemical composition or density of oil-containing sand patties regularly found on Gulf Coast beaches. While small changes in sand patty density were observed in samples collected before and after the hurricane, these variations appear to have been driven by differences in sampling location and not linked to the passing of Hurricane Isaac. Visual and chemical analysis of sand patties confirmed that the contents was consistent with oil from the Macondo well. Petroleum hydrocarbon signatures of samples collected before and after the hurricane showed no notable changes. In the days following Hurricane Isaac, dark-colored mats were also found on the beach in Fort Morgan, AL, and community reports speculated that these mats contained oil from the DWH spill. Chemical analysis of these mat samples identified n-alkanes but no other petroleum hydrocarbons. Bulk and δ13C organic carbon analyses indicated mat samples were comprised of marshland peat and not related to the DWH spill. This research indicates that Hurricane Isaac did not result in a notable change the composition of oil delivered to beaches at the investigated field sites. This study underscores the need for improved communications with interested stakeholders regarding how to differentiate oiled from non-oiled materials. This is especially important given the high cost of removing oiled debris and the increasing likelihood of false positives as oiled-materials washing ashore from a spill become less abundant over time.
    Description: The authors wish to acknowledge support for this project from the Gulf of Mexico Research Initiative (RFP-V), the Deep-C Consortium (SA 16-30), NSF (OCE-1333148) awarded to CMR, and a Gulf Research Program Early-Career Research Fellowship to HKW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...