GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-25
    Description: In the Caenorhabditis elegans zygote, a conserved network of partitioning-defective (PAR) polarity proteins segregates into an anterior and a posterior domain, facilitated by flows of the cortical actomyosin meshwork. The physical mechanisms by which stable asymmetric PAR distributions arise from transient cortical flows remain unclear. We present evidence that PAR polarity arises from coupling of advective transport by the flowing cell cortex to a multistable PAR reaction-diffusion system. By inducing transient PAR segregation, advection serves as a mechanical trigger for the formation of a PAR pattern within an otherwise stably unpolarized system. We suggest that passive advective transport in an active and flowing material may be a general mechanism for mechanochemical pattern formation in developmental systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goehring, Nathan W -- Trong, Philipp Khuc -- Bois, Justin S -- Chowdhury, Debanjan -- Nicola, Ernesto M -- Hyman, Anthony A -- Grill, Stephan W -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1137-41. doi: 10.1126/science.1208619. Epub 2011 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021673" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*embryology/metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism ; *Cell Polarity ; Cytoplasm/metabolism ; Diffusion ; Embryo, Nonmammalian/metabolism/*physiology ; Embryonic Development ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hyman, Anthony A -- Simons, Kai -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1047-9. doi: 10.1126/science.1223728.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany. hyman@mpi-cbg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936764" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans ; Cell Membrane/*chemistry ; Cytoplasm/*chemistry ; Oils/*chemistry ; *Phase Transition ; Water/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-05
    Description: During mitosis, adherent animal cells undergo a drastic shape change, from essentially flat to round. Mitotic cell rounding is thought to facilitate organization within the mitotic cell and be necessary for the geometric requirements of division. However, the forces that drive this shape change remain poorly understood in the presence of external impediments, such as a tissue environment. Here we use cantilevers to track cell rounding force and volume. We show that cells have an outward rounding force, which increases as cells enter mitosis. We find that this mitotic rounding force depends both on the actomyosin cytoskeleton and the cells' ability to regulate osmolarity. The rounding force itself is generated by an osmotic pressure. However, the actomyosin cortex is required to maintain this rounding force against external impediments. Instantaneous disruption of the actomyosin cortex leads to volume increase, and stimulation of actomyosin contraction leads to volume decrease. These results show that in cells, osmotic pressure is balanced by inwardly directed actomyosin cortex contraction. Thus, by locally modulating actomyosin-cortex-dependent surface tension and globally regulating osmotic pressure, cells can control their volume, shape and mechanical properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, Martin P -- Helenius, Jonne -- Toyoda, Yusuke -- Ramanathan, Subramanian P -- Muller, Daniel J -- Hyman, Anthony A -- England -- Nature. 2011 Jan 13;469(7329):226-30. doi: 10.1038/nature09642. Epub 2011 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ETH Zurich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21196934" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/*metabolism ; Animals ; Cell Shape/drug effects/*physiology ; Cell Size/drug effects ; Cytochalasin D/pharmacology ; Cytoskeleton/drug effects/*metabolism ; HeLa Cells ; Humans ; Hydrostatic Pressure ; Microscopy, Atomic Force ; *Mitosis ; Models, Biological ; Osmolar Concentration ; Osmotic Pressure ; Prophase
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-16
    Description: The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodruff, Jeffrey B -- Wueseke, Oliver -- Viscardi, Valeria -- Mahamid, Julia -- Ochoa, Stacy D -- Bunkenborg, Jakob -- Widlund, Per O -- Pozniakovsky, Andrei -- Zanin, Esther -- Bahmanyar, Shirin -- Zinke, Andrea -- Hong, Sun Hae -- Decker, Marcus -- Baumeister, Wolfgang -- Andersen, Jens S -- Oegema, Karen -- Hyman, Anthony A -- R01-GM074207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 May 15;348(6236):808-12. doi: 10.1126/science.aaa3923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany. ; Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre 2650, Denmark. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. hyman@mpi-cbg.de koegema@ucsd.edu. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. hyman@mpi-cbg.de koegema@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Centrosome/*metabolism/ultrasonography ; Metabolic Networks and Pathways ; Phosphorylation ; Polymerization ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hyman, Anthony A -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):119. doi: 10.1126/science.1234741.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307707" target="_blank"〉PubMed〈/a〉
    Keywords: Europe ; Financing, Government ; Inventions ; National Institutes of Health (U.S.)/*economics ; *Research ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-27
    Description: The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahamid, Julia -- Pfeffer, Stefan -- Schaffer, Miroslava -- Villa, Elizabeth -- Danev, Radostin -- Cuellar, Luis Kuhn -- Forster, Friedrich -- Hyman, Anthony A -- Plitzko, Jurgen M -- Baumeister, Wolfgang -- New York, N.Y. -- Science. 2016 Feb 26;351(6276):969-72. doi: 10.1126/science.aad8857.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany. mahamid@biochem.mpg.de baumeis@biochem.mpg.de. ; Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany. ; Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany. Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26917770" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 11 (1995), S. 471-495 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 359 (1992), S. 533-536 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A single point mutation in the CDEIII region of the centromere, RN2011, dramatically decreases the fidelity of chromosome transmission4'6. The CBF3 complex of proteins binds to a DNA-affinity column containing CEN DNA sequences, but not an affinity column containing CEN DNA sequences with the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-02-16
    Description: XMAP215/Dis1 family proteins positively regulate microtubule growth. Repeats at their N termini, called TOG domains, are important for this function. While TOG domains directly bind tubulin dimers, it is unclear how this interaction translates to polymerase activity. Understanding the functional roles of TOG domains is further complicated by the fact that the number of these domains present in the proteins of different species varies. Here, we take advantage of a recent crystal structure of the third TOG domain from Caenorhabditis elegans, Zyg9, and mutate key residues in each TOG domain of XMAP215 that are predicted to be important for interaction with the tubulin heterodimer. We determined the contributions of the individual TOG domains to microtubule growth. We show that the TOG domains are absolutely required to bind free tubulin and that the domains differentially contribute to XMAP215’s overall affinity for free tubulin. The mutants’ overall affinity for free tubulin correlates well with polymerase activity. Furthermore, we demonstrate that an additional basic region is important for targeting to the microtubule lattice and is critical for XMAP215 to function at physiological concentrations. Using this information, we have engineered a “bonsai” protein, with two TOG domains and a basic region, that has almost full polymerase activity.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-24
    Description: During mitotic spindle assembly, Aurora B kinase is part of an error correction mechanism that detaches microtubules from kinetochores that are under low mechanical tension. During anaphase, however, kinetochore–microtubule attachments must be maintained despite a drop of tension after removal of sister chromatid cohesion. Consistent with this requirement, Aurora B relocates away from chromosomes to the central spindle at the metaphase–anaphase transition. By ribonucleic acid interference screening using a phosphorylation biosensor, we identified two PP1-targeting subunits, Sds22 and Repo-Man, which counteracted Aurora B–dependent phosphorylation of the outer kinetochore component Dsn1 during anaphase. Sds22 or Repo-Man depletion induced transient pauses during poleward chromosome movement and a high incidence of chromosome missegregation. Thus, our study identifies PP1-targeting subunits that regulate the microtubule–kinetochore interface during anaphase for faithful chromosome segregation.
    Electronic ISSN: 1540-8140
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...