GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    New York, NY :Springer,
    Schlagwort(e): Glycoconjugates. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (590 pages)
    Ausgabe: 1st ed.
    ISBN: 9781493911547
    Serie: Advances in Neurobiology Series ; v.9
    DDC: 612.8
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates -- 1.1 Introduction -- 1.2 Monosaccharides: Building Blocks of Glycans -- 1.3 Formation of Oligosaccharides -- 1.4 Classification of Glycans -- 1.5 Structural Features of  N -Glycans -- 1.6 Structural Features of  O -Glycans -- 1.7 Biosynthesis of  N - and  O -Glycans -- 1.8 Glycosphingolipids -- 1.9 Structural Features of the Glycan Moieties of Glycosphingolipids -- 1.10 Synthesis and Functions of the Glycan Moieties of Glycolipids -- 1.11 Glycosylphosphatidylinositol Anchors: A Special Group of Glycolipids -- 1.12 Glycosaminoglycans and Proteoglycans -- 1.13 Glycans of Cell Surface Glycoconjugates Perform a Variety of Functions -- 1.14 Summary -- References -- Chapter 2: Introduction to Cells Comprising the Nervous System -- 2.1 Introduction -- 2.2 Neurons -- 2.2.1 Dendrites -- 2.2.2 Axon -- 2.3 Glia -- 2.3.1 Astrocytes -- 2.3.2 Oligodendrocytes and Myelin -- 2.3.3 Microglia -- 2.4 Summary -- References -- Chapter 3: Synthesis, Processing, and Function of N-glycans in N-glycoproteins -- 3.1 Introduction -- 3.2 N-Glycans Are First Born on a Lipid and then Transferred "En Bloc" onto the Nascent N-Glycoprotein in the ER -- 3.3 Trimming, Reglycosylation, and Remodeling: There Are Many Ways of N-Glycoprotein Processing in the ER and Golgi -- 3.4 The Essential Toolbox of a Glycobiologist: A Brief History of the Discovery of N-Glycoprotein Biosynthesis Inhibitors and Their Impact on Our Understanding of N-Glycan Processing -- 3.5 Sweet Encounters of Proteins and Lipids: N-Glycans Affect the Subcellular Distribution and Complex Formation of Enzymes in Glycolipid Biosynthesis -- 3.6 Conclusions and Epilogue: The Tale of the Tail That Wags the Dog -- References. , Chapter 4: Synthesis of O-Linked Glycoconjugates in the Nervous System -- 4.1 Introduction -- 4.2 Biosynthesis of O-Linked Proteins -- 4.2.1 O-GalNAcylation -- 4.2.2 O - Mannosylation -- 4.2.3 O-GlcNAcylation -- 4.2.4 O-Xylosylation -- Heparan Sulfate -- Chondroitin Sulfate -- 4.2.5 O-Fucosylation -- 4.2.6 O-Glucosylation -- 4.3 Biosynthesis of O-Linked Lipids -- 4.3.1 Glucosylceramide and Glycosphingolipids -- 4.3.2 Galactosylceramide and Glycosphingolipids -- 4.3.3 Other O-Linked lipids -- Cholesterylglucoside -- Phosphatidylglucoside -- 4.4 Conclusions -- References -- Chapter 5: Chemistry and Function of Glycosaminoglycans in the Nervous System -- 5.1 Introduction -- 5.2 Glycosaminoglycan Structure and Chemistry -- 5.2.1 Chondroitin Sulfate -- Structure and Chemistry -- Synthesis and Modification of CS Chains -- CS Proteoglycans in Brain -- 5.2.2 Dermatan Sulfate -- 5.2.3 Heparin -- 5.2.4 Heparan Sulfate -- Structure and Chemistry -- Synthesis and Modification of HS Chains -- HS Proteoglycans in Brain -- 5.2.5 Keratan Sulfate -- 5.2.6 Hyaluronan -- 5.3 Function of GAGs in the Brain -- 5.3.1 GAG Interactions and Binding Partners -- 5.3.2 GAG Functions -- Neural System Development -- Brain Patterning -- Neurite Outgrowth and Migration -- Differentiation and Stem-Cell Niche -- Synaptic Plasticity -- 5.3.3 Injury Response -- 5.3.4 GAGs and Human Neural Diseases -- 5.4 Concluding Remarks -- References -- Chapter 6: Use of Glycan-Targeted Antibodies/Lectins to Study the Expression/Function of Glycosyltransferases in the Nervous System -- 6.1 Introduction -- 6.2 HNK-1 Epitope -- 6.3 O-Mannose Glycans in the Brain -- 6.4 GnT-IX Is a Brain-Specific O-Mannose Branching Enzyme -- 6.5 In Vivo Enzymatic Functions of GnT-IX and GnT-V -- 6.6 GnT-IX-Deficient Mice Show Enhanced Recovery from Demyelinating Damage -- References. , Chapter 7: From Mass Spectrometry-Based Glycosylation Analysis to Glycomics and Glycoproteomics -- 7.1 Overview and Scope -- 7.2 Mass Spectrometry for Glycosylation Analysis -- 7.2.1 A Primer for MALDI-MS and LC-ESI-MS -- 7.2.2 LC Separation -- 7.2.3 Chemical Derivatization -- 7.2.4 MS/MS Sequencing -- 7.2.5 Summary and Perspectives -- 7.3 Increasing the Breadth and Depth of MS-Based Glycomic Coverage -- 7.3.1 Addressing Poly- N -acetyllactosaminoglycans -- 7.3.2 Addressing Terminal Disialyl Motif and Polysialylation -- 7.3.3 Addressing Sulfoglycomics -- 7.3.4 Summary and Perspectives -- 7.4 From Glycomics to Glycobiology-Driven Glycoproteomics -- 7.4.1 Raison d'etre and the Inadequacy of Only Defining Site Occupancy -- 7.4.2 MS/MS Sequencing and Identification of Glycopeptides -- 7.5 Closing and Future Prospects -- References -- Chapter 8: Structural Analysis of Oligosaccharides and Glycoconjugates Using NMR -- 8.1 Introduction -- 8.2 Basic NMR Phenomena -- 8.3 Chemical Shifts as Structural Probes -- 8.4 Through "BOND" and Through "SPACE" Interactions -- 8.5 Relaxation and Molecular Motion -- 8.6 Paramagnetic Effects as Sources of Long-Distance Information -- 8.7 Chemical Exchange: Dynamic Aspects in NMR -- 8.8 NMR Tools for Intermolecular Interaction Analysis -- 8.8.1 Oligosaccharide-Protein Interactions -- 8.8.2 Protein Binding to Glycolipid Clusters -- 8.9 Liaisons Between NMR and Computation -- References -- Chapter 9: Glycolipid and Glycoprotein Expression During Neural Development -- 9.1 Introduction -- 9.2 Glycobiology During Early Embryogenesis -- 9.3 Neural Tube Formation -- 9.4 Neuroepithelial Cells and Radial Glial Cells -- 9.4.1 Neural Stem Cells in Development -- Notch -- 9.4.2 Neuroepithelial Cells, Radial Glial Cells, and Intermediate Progenitor Cells -- NECs -- RGCs -- IPCs -- SSEA-1 -- Prominin-1 -- Gangliosides. , Heparin Sulfate Proteoglycans and Chondroitin Sulfate Proteoglycans -- 9.5 Neurogenesis -- 9.5.1 Polysialic Acid-Neural Cell Adhesion Molecule -- 9.5.2 9-O-Acetyl GD3 -- 9.5.3 Gangliosides -- 9.6 Gliogenesis -- 9.6.1 Oligodendrogenesis -- A2B5 -- NG2 -- O4 and O1 -- 9.6.2 Astrogliogenesis -- gp130 -- PtdGlc -- Gangliosides -- 9.7 Adult NSCs and Niche -- 9.7.1 SVZ -- 9.7.2 SGZ -- 9.7.3 Glycoconjugates in Adult NSCs -- 9.7.4 Lectins -- 9.8 Neural Crest Cells -- 9.8.1 HNK-1 -- 9.8.2 PSA-NCAM -- 9.8.3 Other Glycoconjugates -- 9.9 Future Studies -- References -- Chapter 10: Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System -- 10.1 Gangliosides -- 10.2 Gangliosides and Membrane Organization -- 10.3 Metabolic Pathways of Gangliosides -- 10.4 Plasma Membrane-Associated Enzymes and Ganglioside Pattern -- 10.5 Plasma Membrane Glycosphingolipid Hydrolases in the Nervous System -- 10.5.1 Sialidase Neu3 -- 10.5.2 β-Glucocerebrosidases -- 10.5.3 β-Galactosidases -- 10.5.4 β-Hexosaminidases -- 10.6 Conclusions -- References -- Chapter 11: Role of Myelin-Associated Glycoprotein (Siglec-4a) in the Nervous System -- 11.1 Introduction -- 11.2 MAG Structure and Expression -- 11.3 Role of MAG in Axon-Myelin Interaction/Stability -- 11.4 MAG as an Inhibitor of Axon Regeneration -- 11.5 Nurturing/Protective Properties of MAG on Neurons -- 11.6 MAG as a Functional Receptor in Oligodendrocytes -- 11.7 Future Perspectives -- References -- Chapter 12: Role of Galactosylceramide and Sulfatide in Oligodendrocytes and CNS Myelin: Formation of a Glycosynapse -- 12.1 Requirement for Myelin Glycosphingolipids for Maintenance of the Myelin Sheath -- 12.2 Functions of Myelin Glycosphingolipids -- 12.3 Involvement of OLG/Myelin GSLS in Signaling -- 12.4 Natural Ligands That Interact with GalC and SGC and Transmit Signals Across Apposed Membranes. , 12.5 Binding and Effect of Multivalent Glyco-nanoparticles on OLGS -- 12.6 Receptors in OLGS Which Interact with Multivalent Gal/SGal by Trans Interactions -- 12.7 GalC/SGC Signaling Releases Cytoskeletal Restriction of Membrane Domains -- 12.8 Role of MBP in Transmission of GalC/SGC-Mediated Signal -- 12.9 Role of Glycosynapses in OLGS or Myelin -- 12.10 Treatment of Demyelinating Disease by Stimulation of OLGS by GSL Cross-Linking -- References -- Chapter 13: Glycosignaling: A General Review -- 13.1 Introduction: Definition of "Glycosignaling" -- 13.2 Isolation of Glycosignaling Complexes from Brain -- 13.3 Glycosignaling, Biosynthesis, and Brain Development -- 13.4 The Glycocalyx as a Barrier to Glycosignaling -- 13.5 Glycosignaling Heterogeneity in Specific Brain Regions -- 13.6 Evidence That Fatty Acids and Sphingosine Base Heterogeneity Can Affect Glycosignaling: Toxins -- 13.7 Glycosignaling, Rho-GTPase, and Axonal Growth -- 13.8 Glycosignaling and Protein Phosphorylation -- 13.9 Lysosomal Storage Modifies Glycosignaling -- 13.10 Future Directions for Glycosignaling in the Brain -- References -- Chapter 14: Glycosphingolipids in the Regulation of the Nervous System -- 14.1 Introduction -- 14.2 Glycosphingolipids in Cultured Cells -- 14.2.1 Gangliosides Modulate Signals Transduced by Neurotrophic Factors/Receptors -- 14.2.2 Essential Roles of GSLs for Development of Multicellular Organisms -- 14.3 Impact of KO of Glycosyltransferase Genes Located at Stem Steps of GSL Synthesis -- 14.3.1 KO of ST3GAL5 (GM3 Synthase) in Mice -- 14.3.2 KO of UGT8 (GalCer Synthase) and GAL3ST1 (Sulfatide Synthase) in Mice -- 14.3.3 LacCer Synthase KO Mice -- 14.4 Compensation for Lost Functions by Remaining GSLS -- 14.5 Double KO Exhibited More Severe Phenotypes -- 14.6 Response to Neurodegeneration by Modification of Gene Expression in the DKO mice. , 14.7 Mechanisms by Which Gangliosides May Maintain the Integrity of the CNS.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Glycoconjugates. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (506 pages)
    Ausgabe: 2nd ed.
    ISBN: 9783031123900
    Serie: Advances in Neurobiology Series ; v.29
    DDC: 612.8
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Postscript: In Memoriam -- Contents -- Chapter 1: Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates -- 1 Introduction -- 2 Monosaccharides: Building Blocks of Glycans -- 3 Formation of Oligosaccharides -- 4 Classification of Glycans -- 5 Structural Features of N-Glycans -- 6 Structural Features of O-Glycans -- 7 Biosynthesis of N- and O-Glycans -- 8 Glycosphingolipids -- 9 Structural Features of the Glycan Moieties of Glycosphingolipids -- 10 Synthesis and Functions of the Glycan Moieties of Glycolipids -- 11 Glycosylphosphatidylinositol Anchors: A Special Group of Glycolipids -- 12 Glycosaminoglycans and Proteoglycans -- 13 Glycan-Protein Interactions -- 14 Glycans of Cell Surface Glycoconjugates Perform a Variety of Functions -- 15 Summary -- References -- Chapter 2: Cells of the Central Nervous System: An Overview of Their Structure and Function -- 1 Introduction -- 2 Neurons -- 2.1 Neuronal Cell Body -- 2.2 Cytoskeleton -- 2.3 Dendrites -- 2.4 Axon -- 2.5 Synapse -- 3 Supporting Cells -- 3.1 Astrocytes -- 3.2 Oligodendrocytes -- 3.3 Microglia -- 3.4 NG2 Cells (Polydendrocytes) -- 3.5 Ependymal Cells -- 4 Extracellular Matrix -- 5 Concluding Remarks -- References -- Chapter 3: Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins -- 1 Introduction -- 2 N-glycans Are First Born on a Lipid and Then Transferred "En Bloc" onto the Nascent N-glycoprotein in the ER -- 3 Trimming, Reglycosylation, and Remodeling: There Are Many Ways of N-glycoprotein Processing in the ER and Golgi -- 4 The Essential Toolbox of a Glycobiologist: A Brief History of the Discovery of N-glycoprotein Biosynthesis Inhibitors and Their Impact on Our Understanding of N-glycan Processing. , 5 Sweetening the Bond or Sugar-Coating Bad News: Recent Advances in the Role of N-glycans for Virus Infections and Immune Responses -- 6 Sweet Encounters of Glycoproteins and Glycolipids: N-glycans Affect the Subcellular Distribution and Complex Formation of Enzymes in Glycolipid Biosynthesis -- 7 Conclusions and Epilogue: The Tale of the Tail That Wags the Dog -- References -- Chapter 4: Synthesis of O-Linked Glycoconjugates in the Nervous System -- 1 Introduction -- 2 Biosynthesis of O-Linked Proteins -- 2.1 O-GalNAcylation -- 2.2 O-Mannosylation -- 2.3 O-GlcNAcylation -- 2.4 O-Xylosylation -- 2.5 O-Fucosylation -- 2.6 O-Glucosylation -- 3 Biosynthesis of O-Linked Lipids -- 3.1 Glucosylceramide and Glycosphingolipids -- 3.2 Galactosylceramide and Glycosphingolipids -- 3.3 GlcCer and GM3 Synthase Deficiency in Human and Mouse -- 3.4 Other O-Linked Lipids - New Glucose-Related Lipids -- 4 Conclusions -- References -- Chapter 5: Chemistry and Function of Glycosaminoglycans in the Nervous System -- 1 Introduction -- 2 Glycosaminoglycan Structure and Chemistry -- 2.1 Chondroitin Sulfate (CS) -- 2.1.1 Structure and Chemistry -- 2.1.2 Synthesis and Modification of CS Chains -- 2.1.3 CS Proteoglycans (CSPGs) in Brain -- 2.2 Dermatan Sulfate (DS) -- 2.3 Heparin -- 2.4 Heparan Sulfate (HS) -- 2.4.1 Structure and Chemistry -- 2.4.2 Synthesis and Modification of HS Chains -- 2.4.3 Heparan Sulfate Proteoglycans (HSPGs) in Brain -- 2.5 Keratan Sulfate (KS) -- 2.6 Hyaluronan (HA) -- 3 Function of GAGs in the Brain -- 3.1 GAG Interactions and Binding Partners -- 3.2 GAG Functions During Brain Development -- 3.2.1 Neural System Development and Lineage Specification -- 3.2.2 Brain Patterning -- 3.2.3 Neurite Outgrowth, Axonal Pathfinding and Migration -- 3.2.4 Differentiation and Stem-Cell Niche -- 3.2.5 Synaptic Plasticity. , 3.3 GAG Function in CNS-Associated Disorders and Injury -- 3.3.1 Injury Response -- 3.3.2 Neurological Disorders -- 3.3.3 Inflammation -- 3.3.4 Tumorigenesis -- 4 Concluding Remarks -- References -- Chapter 6: Structural Analysis of Oligosaccharides and Glycoconjugates Using NMR -- 1 Introduction -- 2 Basic NMR Phenomena -- 3 Chemical Shifts as Structural Probes -- 4 Through "BOND" and Through "SPACE" Interactions -- 5 Relaxation and Molecular Motion -- 6 Paramagnetic Effects as Sources of Long-Distance Information -- 7 Chemical Exchange: Dynamic Aspects in NMR -- 8 NMR Tools for Intermolecular Interaction Analysis -- 8.1 Oligosaccharide-Protein Interactions -- 8.2 Protein Binding to Glycolipid Clusters -- 9 Liaisons Between NMR and Computation -- References -- Chapter 7: Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology -- 1 Introduction -- 2 Axon Determination/Early Neuronal Differentiation -- 3 Axon Guidance -- 3.1 Axon Guidance by Glycosylated Cell Adhesion Molecules (CAMs) -- 3.2 Glycosaminoglycans in Axon Guidance -- 3.3 Galectins and Their Interactions with Guidance Cues in the Adult Olfactory System -- 4 Axon/Glia Interactions -- 5 Nerve Impulse Generation/Transmission -- 5.1 Voltage-Gated Ion Channels -- 5.2 Voltage-Gated Sodium Channels -- 5.3 Voltage-Gated Potassium Channels -- 5.4 Voltage-Gated Calcium Channels -- 5.5 O-Linked β-N-Acetylglucosaminylation of AIS Proteins -- 6 Axon Regeneration -- 7 New Perspective in CNS Regulation Through Glycan-Lectin Interactions in the Microbiota-Gut-Brain Axis -- References -- Chapter 8: Neurological Consequences of Congenital Disorders of Glycosylation -- 1 Introduction -- 2 Classification -- 2.1 N-Linked Glycosylation Defects -- 2.2 O-Linked Glycosylation Defects -- 2.3 Disorders of Glycosylphosphatidylinositol (GPI) Anchor Biosynthesis. , 2.4 Disorders of Glycosphingolipid (GSL) Glycosylation -- 2.5 Disorders of Multiple Glycosylation Pathways -- 2.6 Recently Described CDG with Neurological Presentation -- 3 Markers/Biochemical Abnormalities -- 4 Congenital Brain Abnormalities -- 5 Epilepsy -- 6 Developmental Delay/Intellectual Disability -- 7 Ataxia -- 8 Neuromuscular Presentation -- 9 Spasticity -- 10 Autistic Features -- 11 Extrapyramidal Manifestation -- 12 Treatment Options -- 13 Conclusions and New Perspectives -- References -- Chapter 9: Brain O-GlcNAcylation: From Molecular Mechanisms to Clinical Phenotype -- 1 Introduction -- 2 O-GlcNAc Is a Ubiquitous Monosaccharide That Cycles Onto and Off Serine and Threonine -- 2.1 O-GlcNAc Is Not Elongated to Yield Complex Oligosaccharides -- 2.2 O-GlcNAc Is Mostly Expressed on the Inside of Cells in Multicellular Organisms -- 2.3 O-GlcNAc Can Be Dynamically Attached and Removed -- 3 O-GlcNAc Is Added to Proteins by OGT and Removed by OGA -- 3.1 Only Two Enzymes Regulate the Cycling of O-GlcNAc -- 3.2 O-GlcNAc Transferase -- a Highly Conserved Glycosyltransferase Present in the Nucleus & -- Cytosol -- 3.3 O-GlcNAcase -- a Cytosolic O-β-GlcNAc Hydrolase with Neutral pH Optima -- 4 O-GlcNAc Is Highly Expressed in the Nervous System -- 4.1 O-GlcNAc Is Found Throughout the Brain -- 4.2 Thousands of Neuronal Proteins Are Modified by O-GlcNAc -- 4.3 O-GlcNAc Regulates Diverse Cellular Processes -- 5 O-GlcNAc Is Essential for Brain Function -- 5.1 Early and Late Brain Development Depends Upon O-GlcNAc Cycling -- 5.2 O-GlcNAc Underlies Learning and Memory -- 5.3 Impaired O-GlcNAc Cycling Contributes to Neurodegenerative Disease -- 5.4 O-GlcNAc Mediates Central Control of Metabolism -- 6 Summary and Outlook -- References -- Chapter 10: Ganglioside Microdomains on Cellular and Intracellular Membranes Regulate Neuronal Cell Fate Determination. , 1 Introduction -- 2 Ganglioside Multifunction in Cell Membranes and Intracellular Organelles -- 3 Ganglioside microdomains for Neuronal Cell Fate Determination -- 4 GD3-EGFR -- 5 GD3 Regulates Mitochondrial Dynamics by Interacting with Drp1 -- 6 GD3 Amplifies SOX2 Expression and GM1 Promotes DCX Expression -- 7 GM1 Binds to Neuronal Gene Promoter Regions -- 8 Nuclear GM1 Promotes Neuronal Gene Expression -- 9 Other Gangliosides for NSC Specification -- 10 Future Studies -- References -- Chapter 11: Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System -- 1 Gangliosides -- 1.1 Ceramide: The Lipid Portion of Gangliosides -- 1.2 The Oligosaccharide Portion of Gangliosides -- 2 Gangliosides and Membrane Organization -- 3 Metabolic Pathways of Gangliosides -- 4 Plasma Membrane-Associated Enzymes and Ganglioside Pattern -- 5 Sialidases, Sialyltransferases and Plasma Membrane Sialidase Neu3 -- 6 β-Hexosaminidase and N-Acetylgalactosaminyltransferase -- 7 β-Glucocerebrosidase -- 8 β-Galactosidase -- 9 Membrane Dynamics: A Non-canonical Pathway Involved in the Establishment of the GSL Profile at the Plasma Membrane -- 10 Conclusions -- References -- Chapter 12: Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease -- 1 Historical Aspects of Structure, Location and Function of GSLs -- 2 Significance and Function of Neuronal GGs -- 3 Intracellular Pathways of GG and GSL Metabolism -- 4 Emerging Concepts of GSL & -- GG Metabolism at Organellar Membranes -- 5 Emerging Topology of Glycolipid Biosynthesis -- 6 Generation of Cell-Type-Specific Ganglioside Patterns -- 7 Enzyme Catalysis at Membrane Surfaces -- 8 GSL Biosynthesis and Salvage Pathways -- 8.1 Ceramide Synthesis -- 8.2 Ganglioside Synthesis and Function -- 9 Inherited Errors of GG Biosynthesis -- 10 Remodeling and Recycling of Cell Surface Gangliosides. , 11 Concepts of the Constitutive Degradation of Gangliosides and Glycosphingolipids at ILVs.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Schlagwort(e): Neurosciences. ; Zoology. ; Neurochemistry.
    Beschreibung / Inhaltsverzeichnis: 1. Introduction to the complexity of cell surface and tissue matrix glycoconjugates. -- 2. Introduction to cells comprising the nervous system. -- 3. Synthesis -- processing -- and function of N-glycans in N-glycoproteins. -- 4. Synthesis of O-linked glycoconjugates in the nervous system. -- 5. Chemistry and function of glycosaminoglycans in the nervous system. -- 6. Use of glycan-targeted antibodies/lectins to study the expression/function of glycosyltransferases in the nervous system. -- 7. Capillary electrophoresis and mass spectrometry-based glycosylation analysis in glycomics and glycoproteomics. -- 8. Structural analysis of oligosaccharides and glycoconjugates using NMR. -- 9. Glycolipid and glycoprotein expression during neural development. -- 10. Gangliosides and cell surface ganglioside glycohydrolases in the nervous system (request them to include gal-cer and sulfatide). -- 11. Role of myelin-associated glycoproteins in the peripheral nervous system. -- 12. Glycosignaling: a general review. -- 13. Glycosphingolipids in the regulation of the nervous system. -- 14. O-GlcNAcylation of neuronal proteins: Roles in neuronal functions and in neurodegeneration. -- 15. Glycoconjugates in nuclear membranes. -- 16. N-glycosylation in regulation of the nervous system. -- 17. Role of carbohydrates in the interaction of pathogens with neural cells. -- 18. Glycoconjugate changes in aging and age-related diseases. -- 19. Gangliosides and glycolipids in neurodegenerative disorders. -- 20. Inborn errors of glycosphingolipid catabolism and potential treatment. -- 21. Neurological aspects of human glycosylation disorders. -- 22. Glycoconjugates and neural tumors. -- 23. Galectins and neuroinflammation . -- 24. Glycoconjugates and neuroimmunological diseases. -- 25. Targeting nanoparticle drug carriers to the brain. -- 26. Use of quantum dots to treat inherited lysosomal storage diseases. -- 27. MALDI-FTICR MS imaging of nervous system glycoconjugates.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(XII, 501 p. 96 illus., 73 illus. in color.)
    Ausgabe: 2nd ed. 2023.
    ISBN: 9783031123900
    Serie: Advances in Neurobiology 29
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The glycosphingolipid (GSL) composition of cells changes dramatically during cellular differentiation. Nerve growth factor (NGF) or forskolin (FRK) are known to induce cellular differentiation including process formation in PC12 pheochromocytoma cells. In this respect, we present the NGF/FRK-dependent regulation of glycosyltransferase activities and the corresponding GSL expression in PC12D cells. After treatment of PC12D cells with NGF or FRK, the cell processes, including varicoses and growth cones, became strongly immunoreactive with an antibody against a unique globo-series neutral GSL, Galα1-3Galα1-4Galβ1-4Glcβ1-1′Cer (GalGb3), and the activity of GalGb3-synthase increased significantly. Other glycosyltransferase activities, including GM1 containing blood group B determinant (BGM1)-, GM3-, GD1a-, and GM2-synthases, also increased significantly upon NGF treatment, but the immunoreactivity against BGM1 did not show any appreciable change. For the parent PC12 cells, NGF/FRK treatment significantly increased the percentage of anti-GalGb3 positive cells and induced some immunoreactive cell processes. Because the parent PC12 cells do not express appreciable amounts of GalGb3, and because PC12D cells are considered to be more differentiated than the parent PC12 cells, the expression of GalGb3 and the increase of GalGb3-synthase activity may be closely related to the cellular differentiation process in this cell line.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The composition of tissue gangliosides is thought to result mainly from the active regulation and selective expression of specific enzymes responsible for their metabolism. In the last few years, we have purified several rat brain sialyltransferases to homogeneity; the availability of these highly purified enzymes enabled us to investigate their regulation and expression at the molecular level. Thus, we studied the regulation of sialyltransferase activities, in particular, CMP-NeuAc:GM1 and CMP-NeuAc:LacCer sialyltransferases by a phosphorylation/dephosphorylation mechanism. Protein kinase C was added to a standard enzyme assay mixture containing [γ-32P]ATP, and the activity of the enzyme was measured after various incubation times. We found that treatment of several sialyltransferases by protein kinase C decreased their activities in a time-dependent manner. Analyses of 32P-labeled amino acids revealed that the major phosphorylation site of CMP-NeuAc:GM1 α2→3 sialyltransferase (ST-IV) was serine and that for CMP-NeuAc:LacCer α2→3 sialyltransferase (ST-I) was primarily threonine. Partial recovery of the enzyme activity could be achieved by treatment of the phosphorylated sialyltransferases with rat brain protein phosphatase. We conclude that the activities of sialyltransferases can be modulated by protein kinase C and protein phosphatase and this may represent a potential regulatory mechanism for ganglioside biosynthesis.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 60 (1993), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Several lines of evidence indicate that cyclic AMP (cAMP) induces oligodendrocyte differentiation. However, the mechanism(s) of this stimulation remains unknown. Because in several cell types the transcriptional activity of various cAMP-responsive genes is regulated through a cisacting DNA sequence known as cAMP response element (CRE), we investigated the possible presence of a CRE binding (CREB) protein in myelinating oligodendrocytes. A double-stranded oligonucleotide containing a tandem repeat of the CRE sequence was labeled with T4 kinase in the presence of [32P]ATP and then incubated with a nuclear protein extract from 14-day-old rat brain oligodendrocytes. The reaction mixture was then electrophoresed on nondenaturing polyacrylamide gels. The results indicated the presence of a protein that specifically binds to the CRE sequence. The results were supported by southwestern blotting assays in which the CRE probe bound to a ˜45-kDa protein species. In separate experiments, it was shown that the 45-kDa protein can be phosphorylated in vitro by the catalytic subunit of protein kinase A. Developmental analysis of CREB protein expression indicated a peak at 14 days of age, preceding the peak of myelinogenesis.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: In patients with neuropathy associated with para-proteinemia, there are monoclonal immunoglobulin M antibodies reacting with myelin-associated glycoprotein and sulfated glucuronyl glycolipids. There are indications that the monoclonal antibodies may be responsible for these neuropathies. However, the mechanism by which the antibodies gain access to the nervous tissue, which is separated by the blood-brain barrier or blood-nerve barrier, is still unknown. In this study, we examined the presence of the sulfated glucuronyl glycolipid antigens on brain endothelial cells. Micro-vessels were isolated from adult Lewis rat brain cortex. Sulfated glucuronyl paragloboside (SGPG) was detected in the acidic lipid fraction by a TLC immunostaining method. Immunofluorescence studies showed positive staining on the surface of microvessels. In addition, SGPG could be detected in the cultured endothelial cells of human umbilical vein. These findings suggest that the endothelial cells contain an-tigenic sites for interaction with the autoantibodies. This type of interaction may result in damages to the endothelial cell function and may be responsible for changes in the blood-brain barrier permeability and the ensuing penetration of large molecules, such as immunoglobulins, into the endo-neurial space.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 47 (1986), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: A neuraminidase activity in myelin isolated from adult rat brains was examined. The enzyme activity in myelin was first compared with that in microsomes using N-acetylneuramin(α2 → 3)lactitol (NL) as a substrate. In contrast to the microsomal neuraminidase which exhibited a sharp pH dependency for its activity, the myelin enzyme gave a very shallow pH activity curve over a range between 3.6 and 5.9. The myelin enzyme was more stable to heat denaturation (65°C) than the microsomal enzyme. Inhibition studies with a competitive inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, showed the Ki value for the myelin neuraminidase to be about one-fifth of that for the microsomal enzyme (1.3 × 10−6M versus 6.3 × 10−6M). The apparent Km values for the myelin and the microsomal enzyme were 1.3 × 10−4M and 4.3 × 10−4M, respectively. An enzyme preparation that was practically devoid of myelin lipids was then prepared and its substrate specificity examined. The “delipidated enzyme” could hydrolyze fetuin, NL, and ganglioside substrates, including GM1, and GM2. When the delipidated enzyme was exposed to high temperature (55°C) or low pH (pH 2.54), the neuraminidase activities toward NL and GM3 decreased at nearly the same rate. Both fetuin and 2,3-dehydro-2-deoxy-N-acetylneuraminic acid inhibited NL and GM3 hydrolysis. With 2,3-dehydro −2-deoxy-N-acetylneuraminic acid, inhibition of NL was greater than that of GM3; however, the Ki values for each substrate were almost identical. GM3 and GM1, also competitively inhibited the hydrolysis of NL and NL similarly inhibited GM3 hydrolysis by the enzyme. These results indicate that rat brain myelin has intrinsic neuraminidase activities toward nonganglioside as well as ganglioside substrates, and that these two enzyme activities are likely catalyzed by a single enzyme entity.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 66 (1996), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: A highly purified nuclear membrane preparation was obtained from adult rat brain and examined for sialidase activity using GM3, GD1a, GD1b, or N-acetylneuramin lactitol as the substrate. The nuclear membranes contained an appreciable level of sialidase activity; the specific activities toward GM3 and N-acetylneuramin lactitol were 20.5 and 23.8% of the activities in the total brain homogenate, respectively. The sialidase activity in nuclear membranes showed substrate specificity distinct from other membrane-bound sialidases localized in lysosomal membranes, synaptosomal plasma membranes, or myelin membranes. These results strongly suggest the existence of a sialidase activity associated with the nuclear membranes from rat brain.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Several gangliosides of human nervous tissues have been reported to be potential target antigens in autoimmune neuropathies. To explain the diversity of clinical symptoms in patients with antiganglioside antibodies, we have searched for ganglioside antigens that are specific to individual nervous tissues such as motoneurons, peripheral motor nerves, and sensory nerves. Although the major ganglioside compositions were not different among human peripheral motor and sensory nerves, fucosyl-GM1 was found to be expressed in sensory nervous tissue but not in spinal cord, motor nerve, and sympathetic ganglia. Sera from several patients with sensory nerve involvement also reacted with fucosyl-GM1 as well as GM1. Thus, fucosyl-GM1 may be a responsible target antigen for developing sensory symptoms in some patients with autoimmune neuropathies.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...