GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Photoreceptors. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (499 pages)
    Ausgabe: 1st ed.
    ISBN: 9783527604852
    DDC: 571.6
    Sprache: Englisch
    Anmerkung: Intro -- Handbook of Photosensory Receptors -- Table of Contents -- Preface -- List of Authors -- 1 Microbial Rhodopsins: Phylogenetic and Functional Diversity -- 1.1 Introduction -- 1.2 Archaeal Rhodopsins -- 1.3 Clues to Newfound Microbial Rhodopsin Function from Primary Sequence Comparison to Archaeal Rhodopsins -- 1.4 Bacterial Rhodopsins -- 1.4.1 Green-absorbing Proteorhodopsin ("GPR") from Monterey Bay Surface Plankton -- 1.4.2 Blue-absorbing Proteorhodopsin ("BPR") from Hawaiian Deep Sea Plankton -- 1.4.3 Anabaena Sensory Rhodopsin -- 1.4.4 Other Bacterial Rhodopsins -- 1.5 Eukaryotic Microbial Rhodopsins -- 1.5.1 Fungal Rhodopsins -- 1.5.2 Algal Rhodopsins -- 1.6 Spectral Tuning -- 1.7 A Unified Mechanism for Molecular Function? -- 1.8 Opsin-related Proteins without the Retinal-binding Site -- 1.9 Perspective -- References -- 2 Sensory Rhodopsin Signaling in Green Flagellate Algae -- 2.1 Introduction -- 2.1.1 Retinylidene Receptors -- 2.1.2. Physiology of Algal Phototaxis and the Photophobic Response -- 2.1.3 Photoelectrical Currents and their Relationship to Swimming Behavior -- 2.2 The Photosensory Receptors: CSRA and CSRB -- 2.2.1 Genomics, Sequence, and Predicted Structure -- 2.2.2 Cellular Content and Roles in Phototaxis and Photophobic Behavior -- 2.2.3 Molecular Mechanism of Action -- 2.3 Other Algae -- 2.4 Conclusion and Future Perspectives -- Acknowledgements -- References -- 3 Visual Pigments as Photoreceptors -- 3.1 Introduction -- 3.1.1 General Considerations -- 3.1.2 Photoreceptors and Pigments -- 3.1.3 Non-photoreceptor or "Non-rod", "Non-cone" Retinal Pigments -- 3.1.4 Retinal Photoisomerases -- 3.2 The Unphotolyzed State of Vertebrate Visual Pigments -- 3.2.1 Structure of Visual Pigments: the Chromophore -- 3.2.2 Overall Topology of the Pigment -- 3.2.3 Cytoplasmic Domain. , 3.2.4 The Hydrophobic Core of Rhodopsin and the Retinal Binding Pocket -- 3.2.5 The Extracellular Domain of Rhodopsin -- 3.2.6 Structure of Other Visual Pigments -- 3.2.7 Protonation State of Some of the Carboxylic Acids of Rhodopsin -- 3.2.8 Internal Waters in Visual Pigments -- 3.2.9 Is Rhodopsin a Dimer in vivo? -- 3.2.10 Functional Properties of the Unphotolyzed State of a "Good" Visual Pigment -- 3.2.11 Quantum Efficiency of Visual Pigment Photochemistry -- 3.2.12 Dark Noise Originating from the Photoreceptor Pigment -- 3.3 Activation of Vertebrate Visual Pigments -- 3.3.1 Introduction -- 3.3.2 The Primary Event, Photoisomerization -- 3.3.3 The Meta I ↔ Meta II Transition -- 3.3.4 Molecular Changes upon the Formation of Meta I and Meta II -- 3.3.5 Internal Water Molecules -- 3.3.6 Required Steps for Rhodopsin Activation -- 3.3.7 The Transmembrane Signaling Pathway -- 3.4 The Unphotolyzed State of Invertebrate Visual Pigments -- 3.4.1 Introduction -- 3.4.2 Wavelength Regulation of Invertebrate Pigments -- 3.5 Mechanism of Activation of Invertebrate Visual Pigments -- 3.5.1 The Initial Photochemical Events -- 3.5.2 Formation of Acid Metarhodopsin -- 3.5.3 Required Steps for Photolyzed Octopus Rhodopsin to Activate its G-protein -- 3.5.4 Purification of the Active Form of an Invertebrate Visual Pigment -- Acknowledgements -- References -- 4 Structural and Functional Aspects of the Mammalian Rod-Cell Photoreceptor Rhodopsin -- 4.1 Introduction -- 4.2 Rhodopsin and Mammalian Visual Phototransduction -- 4.2.1 Signal Amplification by Light-activated Rhodopsin -- 4.2.2 Inactivation of Light-activated Rhodopsin -- 4.3 Properties of Rhodopsin -- 4.3.1 Isolation of Rhodopsin -- 4.3.2 Biochemical and Physicochemical Properties of Rhodopsin -- 4.3.3 Post-translational Modifications in Rhodopsin -- 4.3.4 Membrane Topology of Rhodopsin and Functional Domains. , 4.4 Chromophore Binding Pocket and Photolysis of Rhodopsin -- 4.5 Structure of Rhodopsin -- 4.5.1 Crystal Structure of Rhodopsin -- 4.5.2 Atomic Force Microscopy of Rhodopsin in the Disk Membrane -- 4.6 Activation Mechanism of Rhodopsin -- 4.7 Conclusions -- Acknowledgements -- References -- 5 A Novel Light Sensing Pathway in the Eye: Conserved Features of Inner Retinal Photoreception in Rodents, Man and Teleost Fish -- Summary -- 5.1 Introduction -- 5.1.1 A Novel Photoreceptor within the Eye -- 5.1.2 Biological Clocks and their Regulation by Light -- 5.2 Non-rod, Non-cone Photoreception in Rodents -- 5.2.1 An Irradiance Detection Pathway in the Eye -- 5.2.2 The Discovery of a Novel Ocular Photopigment in Mice (OP(480)) -- 5.2.3 Melanopsin and Non-rod, Non-cone Photoreception -- 5.2.4 A Functional Syncitium of Directly Light-sensitive Ganglion Cells -- 5.3 Non-rod, Non-cone Photoreception in Humans -- 5.3.1 Introduction -- 5.3.2 Novel Photoreceptors Regulate Melatonin -- 5.3.3 Novel Photoreceptors Regulate the Primary Visual Cone Pathway -- 5.4 Non-rod, Non-cone Photoreception in Teleost Fish -- 5.4.1 Background -- 5.4.2 Vertebrate Ancient (VA) Opsin and Inner Retinal Photoreception in Teleost Fish -- 5.4.3 A Novel Light Response from VA-opsin- and Melanopsin-expressing Horizontal Cells -- 5.4.4 Action Spectra for the HC-RSD Light Response Identify a Novel Photopigment -- 5.4.5 The Possible Function of HC-RSD Neurones -- 5.5 Opsins can be Photosensors or Photoisomerases -- 5.6 Placing Candidate Genes and Photopigments into Context -- 5.7 Conclusions -- References -- 6 The Phytochromes -- 6.1 Introduction -- 6.1.1 Photomorphogenesis and Phytochromes -- 6.1.2 The Central Dogma of Phytochrome Action -- 6.2 Molecular Properties of Eukaryotic and Prokaryotic Phytochromes -- 6.2.1 Molecular Properties of Plant Phytochromes. , 6.2.2 Molecular Properties of Cyanobacterial Phytochromes -- 6.3 Photochemical and Nonphotochemical Conversions of Phytochrome -- 6.3.1 The Phytochrome Chromophore -- 6.3.2 Phytochrome Photointerconversions -- 6.3.3 Dark Reversion -- 6.4 Phytochrome Biosynthesis and Turnover -- 6.4.1 Phytobilin Biosynthesis in Plants and Cyanobacteria -- 6.4.2 Apophytochrome Biosynthesis and Holophytochrome Assembly -- 6.4.3 Phytochrome Turnover -- 6.5 Molecular Mechanism of Phytochrome Signaling: Future Perspective -- 6.5.1 Regulation of Protein-Protein Interactions by Phosphorylation -- 6.5.2 Regulation of Tetrapyrrole Metabolism -- Acknowledgements -- References -- 7 Phytochrome Signaling -- 7.1 Introduction -- 7.2 Photosensory and Biological Functions of Individual Phytochromes -- 7.3 phy Domains Involved in Signaling -- 7.4 phy Signaling Components -- 7.4.1 Second Messenger Hypothesis -- 7.4.2 Genetically Identified Signaling Components -- 7.4.3 phy-Interacting Factors -- 7.4.4 Early phy-Responsive Genes -- 7.5 Biochemical Mechanism of Signal Transfer -- 7.6 phy Signaling and Circadian Rhythms -- 7.7 Future Prospects -- Acknowledgements -- References -- 8 Phytochromes in Microorganisms -- 8.1 Introduction -- 8.2 Higher Plant Phys -- 8.3 The Discovery of Microbial Phys -- 8.4 Phylogenetic Analysis of the Phy Superfamily -- 8.4.1 Cyanobacterial Phy (Cph) Family -- 8.4.2 Bacteriophytochrome (BphP) Family -- 8.4.3 Fungal Phy (Fph) Family -- 8.4.4 Phy-like Sequences -- 8.5 Downstream Signal-Transduction Cascades -- 8.6 Physiological Roles of Microbial Phys -- 8.6.1 Regulation of Phototaxis -- 8.6.2 Enhancement of Photosynthetic Potential -- 8.6.3 Photocontrol of Pigmentation -- 8.7 Evolution of the Phy Superfamily -- 8.8 Perspectives -- Acknowledgements -- References -- 9 Light-activated Intracellular Movement of Phytochrome -- 9.1 Introduction. , 9.2 The Classical Methods -- 9.2.1 Spectroscopic Methods -- 9.2.2 Cell Biological Methods -- 9.2.3 Immunocytochemical Methods -- 9.3 Novel Methods -- 9.4 Intracellular Localization of PHYB in Dark and Light -- 9.5 Intracellular Localization of PHYA in Dark and Light -- 9.6 Intracellular Localization of PHYC, PHYD and PHYE in Dark and Light -- 9.7 Intracellular Localization of Intragenic Mutant Phytochromes -- 9.7.1 Hyposensitive, Loss-of-function Mutants -- 9.7.2 Hypersensitive Mutants -- 9.8 Protein Composition of Nuclear Speckles Associated with phyB -- 9.9 The Function of Phytochromes Localized in Nuclei and Cytosol -- 9.10 Concluding Remarks -- References -- 10 Plant Cryptochromes: Their Genes, Biochemistry, and Physiological Roles -- Summary -- 10.1 Cryptochrome Genes and Evolution -- 10.1.1 The Discovery of Cryptochromes -- 10.1.2 Distribution of Cryptochromes and their Evolution -- 10.2 Cryptochrome Domains, Cofactors and Similarities with Photolyase -- 10.3 Biological Function of Plant Cryptochromes -- 10.3.1 Control of Growth -- 10.3.2 Role of Cryptochromes in Circadian Clock Entrainment and Photoperiodism -- 10.3.3 Regulation of Gene Expression -- 10.4 Localization of Cryptochromes -- 10.5 Biochemical Properties of Cryptochromes -- 10.5.1 Protein Stability -- 10.5.2 Phosphorylation -- 10.5.3 DNA Binding -- 10.5.4 Electron Transfer -- 10.6 Summary -- Acknowledgements -- References -- 11 Plant Cryptochromes and Signaling -- 11.1 Introduction -- 11.2 Photolyases -- 11.3 Cryptochrome Photochemistry -- 11.4 Cryptochrome Action Spectra -- 11.5 Cryptochromes and Blue Light-dependent Inhibition of Cell Expansion -- 11.6 Signaling Mutants -- 11.7 Signaling by Cryptochrome CNT and CCT Domains -- 11.8 Arabidopsis Cryptochromes Exist as Dimers -- 11.9 COP1, a Signaling Partner of Arabidopsis Cryptochromes -- 11.10 Cryptochrome and Phosphorylation. , 11.11 Cryptochrome and Gene Expression.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Biochemistry 27 (1988), S. 2540-2546 
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Biochemistry 27 (1988), S. 5843-5848 
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Biochemistry 27 (1988), S. 2420-2424 
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 26 (1997), S. 223-258 
    ISSN: 1056-8700
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Biologie , Physik
    Notizen: Abstract Two sensory rhodopsins (SRI and SRII) mediate color-sensitive phototaxis responses in halobacteria. These seven-helix receptor proteins, structurally and functionally similar to animal visual pigments, couple retinal photoisomerization to receptor activation and are complexed with membrane-embedded transducer proteins (HtrI and HtrII) that modulate a cytoplasmic phosphorylation cascade controlling the flagellar motor. The Htr proteins resemble the chemotaxis transducers from Escherichia coli. The SR-Htr signaling complexes allow studies of the biophysical chemistry of signal generation and relay, from the photobiophysics of initial excitation of the receptors to the final output at the level of the flagellar motor switch, revealing fundamental principles of sensory transduction and more broadly the nature of dynamic interactions between membrane proteins. We review here recent advances that have led to new insights into the molecular mechanism of signaling by these membrane complexes.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 365-392 
    ISSN: 1081-0706
    Quelle: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Thema: Biologie , Medizin
    Notizen: Abstract Retinylidene proteins, containing seven membrane-embedded alpha-helices that form an internal pocket in which the chromophore retinal is bound, are ubiquitous in photoreceptor cells in eyes throughout the animal kingdom. They are also present in a diverse range of other organisms and locations, such as archaeal prokaryotes, unicellular eukaryotic microbes, the dermal tissue of frogs, the pineal glands of lizards and birds, the hypothalamus of toads, and the human brain. Their functions include light-driven ion transport and phototaxis signaling in microorganisms, and retinal isomerization and various types of photosignal transduction in higher animals. The aims of this review are to examine this group of photoactive proteins as a whole, to summarize our current understanding of structure/function relationships in the best-studied examples, and to report recent new developments.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...