GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Schlagwort(e): Nuclear structure. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Enhanced by a number of solved problems and examples, this volume will be a valuable resource to advanced undergraduate and graduate students in chemistry, chemical engineering, biochemistry biophysics, pharmacology, and computational biology.
    Materialart: Online-Ressource
    Seiten: 1 online resource (397 pages)
    Ausgabe: 1st ed.
    ISBN: 9781000072327
    Serie: Foundations of Biochemistry and Biophysics Series
    DDC: 572
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Author -- Section I: Probability Theory -- 1: Probability and Its Applications -- 1.1 Introduction -- 1.2 Experimental Probability -- 1.3 The Sample Space Is Related to the Experiment -- 1.4 Elementary Probability Space -- 1.5 Basic Combinatorics -- 1.5.1 Permutations -- 1.5.2 Combinations -- 1.6 Product Probability Spaces -- 1.6.1 The Binomial Distribution -- 1.6.2 Poisson Theorem -- 1.7 Dependent and Independent Events -- 1.7.1 Bayes Formula -- 1.8 Discrete Probability-Summary -- 1.9 One-Dimensional Discrete Random Variables -- 1.9.1 The Cumulative Distribution Function -- 1.9.2 The Random Variable of the Poisson Distribution -- 1.10 Continuous Random Variables -- 1.10.1 The Normal Random Variable -- 1.10.2 The Uniform Random Variable -- 1.11 The Expectation Value -- 1.11.1 Examples -- 1.12 The Variance -- 1.12.1 The Variance of the Poisson Distribution -- 1.12.2 The Variance of the Normal Distribution -- 1.13 Independent and Uncorrelated Random Variables -- 1.13.1 Correlation -- 1.14 The Arithmetic Average -- 1.15 The Central Limit Theorem -- 1.16 Sampling -- 1.17 Stochastic Processes-Markov Chains -- 1.17.1 The Stationary Probabilities -- 1.18 The Ergodic Theorem -- 1.19 Autocorrelation Functions -- 1.19.1 Stationary Stochastic Processes -- Homework for Students -- A Comment about Notations -- References -- Section II: Equilibrium Thermodynamics and Statistical Mechanics -- 2: Classical Thermodynamics -- 2.1 Introduction -- 2.2 Macroscopic Mechanical Systems versus Thermodynamic Systems -- 2.3 Equilibrium and Reversible Transformations -- 2.4 Ideal Gas Mechanical Work and Reversibility -- 2.5 The First Law of Thermodynamics -- 2.6 Joule's Experiment -- 2.7 Entropy -- 2.8 The Second Law of Thermodynamics. , 2.8.1 Maximal Entropy in an Isolated System -- 2.8.2 Spontaneous Expansion of an Ideal Gas and Probability -- 2.8.3 Reversible and Irreversible Processes Including Work -- 2.9 The Third Law of Thermodynamics -- 2.10 Thermodynamic Potentials -- 2.10.1 The Gibbs Relation -- 2.10.2 The Entropy as the Main Potential -- 2.10.3 The Enthalpy -- 2.10.4 The Helmholtz Free Energy -- 2.10.5 The Gibbs Free Energy -- 2.10.6 The Free Energy, , H.(T,µ) -- 2.11 Maximal Work in Isothermal and Isobaric Transformations -- 2.12 Euler's Theorem and Additional Relations for the Free Energies -- 2.12.1 Gibbs-Duhem Equation -- 2.13 Summary -- Homework for Students -- References -- Further Reading -- 3: From Thermodynamics to Statistical Mechanics -- 3.1 Phase Space as a Probability Space -- 3.2 Derivation of the Boltzmann Probability -- 3.3 Statistical Mechanics Averages -- 3.3.1 The Average Energy -- 3.3.2 The Average Entropy -- 3.3.3 The Helmholtz Free Energy -- 3.4 Various Approaches for Calculating Thermodynamic Parameters -- 3.4.1 Thermodynamic Approach -- 3.4.2 Probabilistic Approach -- 3.5 The Helmholtz Free Energy of a Simple Fluid -- Reference -- Further Reading -- 4: Ideal Gas and the Harmonic Oscillator -- 4.1 From a Free Particle in a Box to an Ideal Gas -- 4.2 Properties of an Ideal Gas by the Thermodynamic Approach -- 4.3 The chemical potential of an Ideal Gas -- 4.4 Treating an Ideal Gas by the Probability Approach -- 4.5 The Macroscopic Harmonic Oscillator -- 4.6 The Microscopic Oscillator -- 4.6.1 Partition Function and Thermodynamic Properties -- 4.7 The Quantum Mechanical Oscillator -- 4.8 Entropy and Information in Statistical Mechanics -- 4.9 The Configurational Partition Function -- Homework for Students -- References -- Further Reading -- 5: Fluctuations and the Most Probable Energy -- 5.1 The Variances of the Energy and the Free Energy. , 5.2 The Most Contributing Energy E* -- 5.3 Solving Problems in Statistical Mechanics -- 5.3.1 The Thermodynamic Approach -- 5.3.2 The Probabilistic Approach -- 5.3.3 Calculating the Most Probable Energy Term -- 5.3.4 The Change of Energy and Entropy with Temperature -- References -- 6: Various Ensembles -- 6.1 The Microcanonical (petit) Ensemble -- 6.2 The Canonical (NVT) Ensemble -- 6.3 The Gibbs (NpT) Ensemble -- 6.4 The Grand Canonical (µVT) Ensemble -- 6.5 Averages and Variances in Different Ensembles -- 6.5.1 A Canonical Ensemble Solution (Maximal Term Method) -- 6.5.2 A Grand-Canonical Ensemble Solution -- 6.5.3 Fluctuations in Different Ensembles -- References -- Further Reading -- 7: Phase Transitions -- 7.1 Finite Systems versus the Thermodynamic Limit -- 7.2 First-Order Phase Transitions -- 7.3 Second-Order Phase Transitions -- References -- 8: Ideal Polymer Chains -- 8.1 Models of Macromolecules -- 8.2 Statistical Mechanics of an Ideal Chain -- 8.2.1 Partition Function and Thermodynamic Averages -- 8.3 Entropic Forces in an One-Dimensional Ideal Chain -- 8.4 The Radius of Gyration -- 8.5 The Critical Exponent ν -- 8.6 Distribution of the End-to-End Distance -- 8.6.1 Entropic Forces Derived from the Gaussian Distribution -- 8.7 The Distribution of the End-to-End Distance Obtained from the Central Limit Theorem -- 8.8 Ideal Chains and the Random Walk -- 8.9 Ideal Chain as a Model of Reality -- References -- 9: Chains with Excluded Volume -- 9.1 The Shape Exponent ν for Self-avoiding Walks -- 9.2 The Partition Function -- 9.3 Polymer Chain as a Critical System -- 9.4 Distribution of the End-to-End Distance -- 9.5 The Effect of Solvent and Temperature on the Chain Size -- 9.5.1 θ Chains in d = 3 -- 9.5.2 θ Chains in d = 2 -- 9.5.3 The Crossover Behavior Around -- 9.5.4 The Blob Picture -- 9.6 Summary -- References. , Section III: Topics in Non-Equilibrium Thermodynamics and Statistical Mechanics -- 10: Basic Simulation Techniques: Metropolis Monte Carlo and Molecular Dynamics -- 10.1 Introduction -- 10.2 Sampling the Energy and Entropy and New Notations -- 10.3 More About Importance Sampling -- 10.4 The Metropolis Monte Carlo Method -- 10.4.1 Symmetric and Asymmetric MC Procedures -- 10.4.2 A Grand-Canonical MC Procedure -- 10.5 Efficiency of Metropolis MC -- 10.6 Molecular Dynamics in the Microcanonical Ensemble -- 10.7 MD Simulations in the Canonical Ensemble -- 10.8 Dynamic MD Calculations -- 10.9 Efficiency of MD -- 10.9.1 Periodic Boundary Conditions and Ewald Sums -- 10.9.2 A Comment About MD Simulations and Entropy -- References -- 11: Non-Equilibrium Thermodynamics-Onsager Theory -- 11.1 Introduction -- 11.2 The Local-Equilibrium Hypothesis -- 11.3 Entropy Production Due to Heat Flow in a Closed System -- 11.4 Entropy Production in an Isolated System -- 11.5 Extra Hypothesis: A Linear Relation Between Rates and Affinities -- 11.5.1 Entropy of an Ideal Linear Chain Close to Equilibrium -- 11.6 Fourier's Law-A Continuum Example of Linearity -- 11.7 Statistical Mechanics Picture of Irreversibility -- 11.8 Time Reversal, Microscopic Reversibility, and the Principle of Detailed Balance -- 11.9 Onsager's Reciprocal Relations -- 11.10 Applications -- 11.11 Steady States and the Principle of Minimum Entropy Production -- 11.12 Summary -- References -- 12: Non-equilibrium Statistical Mechanics -- 12.1 Fick's Laws for Diffusion -- 12.1.1 First Fick's Law -- 12.1.2 Calculation of the Flux from Thermodynamic Considerations -- 12.1.3 The Continuity Equation -- 12.1.4 Second Fick's Law-The Diffusion Equation -- 12.1.5 Diffusion of Particles Through a Membrane -- 12.1.6 Self-Diffusion -- 12.2 Brownian Motion: Einstein's Derivation of the Diffusion Equation. , 12.3 Langevin Equation -- 12.3.1 The Average Velocity and the Fluctuation-Dissipation Theorem -- 12.3.2 Correlation Functions -- 12.3.3 The Displacement of a Langevin Particle -- 12.3.4 The Probability Distributions of the Velocity and the Displacement -- 12.3.5 Langevin Equation with a Charge in an Electric Field -- 12.3.6 Langevin Equation with an External Force-The Strong Damping Velocity -- 12.4 Stochastic Dynamics Simulations -- 12.4.1 Generating Numbers from a Gaussian Distribution by CLT -- 12.4.2 Stochastic Dynamics versus Molecular Dynamics -- 12.5 The Fokker-Planck Equation -- 12.6 Smoluchowski Equation -- 12.7 The Fokker-Planck Equation for a Full Langevin Equation with a Force -- 12.8 Summary of Pairs of Equations -- References -- 13: The Master Equation -- 13.1 Master Equation in a Microcanonical System -- 13.2 Master Equation in the Canonical Ensemble -- 13.3 An Example from Magnetic Resonance -- 13.3.1 Relaxation Processes Under Various Conditions -- 13.3.2 Steady State and the Rate of Entropy Production -- 13.4 The Principle of Minimum Entropy Production-Statistical Mechanics Example -- References -- Section IV: Advanced Simulation Methods: Polymers and Biological Macromolecules -- 14: Growth Simulation Methods for Polymers -- 14.1 Simple Sampling of Ideal Chains -- 14.2 Simple Sampling of SAWs -- 14.3 The Enrichment Method -- 14.4 The Rosenbluth and Rosenbluth Method -- 14.5 The Scanning Method -- 14.5.1 The Complete Scanning Method -- 14.5.2 The Partial Scanning Method -- 14.5.3 Treating SAWs with Finite Interactions -- 14.5.4 A Lower Bound for the Entropy -- 14.5.5 A Mean-Field Parameter -- 14.5.6 Eliminating the Bias by Schmidt's Procedure -- 14.5.7 Correlations in the Accepted Sample -- 14.5.8 Criteria for Efficiency -- 14.5.9 Locating Transition Temperatures -- 14.5.10 The Scanning Method versus Other Techniques. , 14.5.11 The Stochastic Double Scanning Method.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 6241-6243 
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 9380-9382 
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 4847-4854 
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 7215-7224 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The local states and hypothetical scanning methods enable one to define a series of lower bound approximations for the free energy, FA from a sample of configurations simulated by any exact method. FA is expected to anticorrelate with its fluctuation σA, i.e., the better (i.e., larger) is FA the smaller is σA, where σA becomes zero for the exact F. Relying on ideas proposed by Meirovitch and Alexandrowicz [J. Stat. Phys. 15, 123 (1976)] we best-fit such results to the function FA=Fextp+C[σA]α where C, and α are parameters to be optimized, and Fextp is the extrapolated value of the free energy. If this function is also convex (concave down), one can obtain an upper bound denoted Fup. This is the intersection of the tangent to the function at the lowest σA measured with the vertical axis at σA=0. We analyze such simulation data for the square Ising lattice and four polymer chain models for which the correct F values have been calculated with high precision by exact methods. For all models we have found that the expected concavity always exists and that the results for Fextp and Fup are stable. In particular, extremely accurate results for the free energy and the entropy have been obtained for the Ising model. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 7868-7871 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: We propose a conformational search method, based on local torsional deformations (LTD) for locating the low energy structures of cyclic peptides, loops in proteins or dense polymer systems. LTD is applied preliminarily to cycloundecane modeled by the MM2 force field, and is found to be more efficient than other techniques. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Macromolecules 16 (1983), S. 249-252 
    ISSN: 1520-5835
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Macromolecules 18 (1985), S. 563-569 
    ISSN: 1520-5835
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Macromolecules 18 (1985), S. 569-573 
    ISSN: 1520-5835
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Macromolecules 16 (1983), S. 1628-1631 
    ISSN: 1520-5835
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie , Physik
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...