GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Buch
    Buch
    Leiden : Brill Nijhoff
    Schlagwort(e): Marine resources development Law and legislation ; Continental shelf Law and legislation ; Groundwater Law and legislation ; Hochschulschrift ; Natürliche Ressourcen ; Meeresnutzung ; Grundwasser ; Regulierung ; Unterirdisches Wasser
    Beschreibung / Inhaltsverzeichnis: Introduction -- Legal Principles Governing Seabed Natural Resources -- Legal Principles Governing Land-based Freshwater Resources -- Legal Principles Governing Offshore Hydrocarbon Development -- Governance of Offshore Freshwater and Emerging Trends.
    Materialart: Buch
    Seiten: IX, 295 Seiten
    ISBN: 9789004421035
    Serie: Legal aspects of sustainable development volume 25
    DDC: 341.4/48
    RVK:
    RVK:
    Sprache: Englisch
    Anmerkung: Includes bibliographical references ([247]-285) and index
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-07-04
    Beschreibung: First reported in the 1960s, offshore freshened groundwater (OFG) has now been documented in most continental margins around the world. In this review we compile a database documenting OFG occurrences and analyze it to establish the general characteristics and controlling factors. We also assess methods used to map and characterize OFG, identify major knowledge gaps, and propose strategies to address them. OFG has a global volume of 1 × 106 km3; it predominantly occurs within 55 km of the coast and down to a water depth of 100 m. OFG is mainly hosted within siliciclastic aquifers on passive margins and recharged by meteoric water during Pleistocene sea level lowstands. Key factors influencing OFG distribution are topography‐driven flow, salinization via haline convection, permeability contrasts, and the continuity/connectivity of permeable and confining strata. Geochemical and stable isotope measurements of pore waters from boreholes have provided insights into OFG emplacement mechanisms, while recent advances in seismic reflection profiling, electromagnetic surveying, and numerical models have improved our understanding of OFG geometry and controls. Key knowledge gaps, such as the extent and function of OFG, and the timing of their emplacement, can be addressed by the application of isotopic age tracers, joint inversion of electromagnetic and seismic reflection data, and development of three‐dimensional hydrological models. We show that such advances, combined with site‐specific modeling, are necessary to assess the potential use of OFG as an unconventional source of water and its role in sub‐seafloor geomicrobiology.
    Beschreibung: Plain Language Summary: This review paper considers offshore freshened groundwater (OFG), which is water hosted in sediments and rocks below the seafloor, with a total dissolved solid concentration lower than seawater. We have compiled 〉300 records to demonstrate that freshened groundwater occurs offshore on most continents around the world and has a global volume of 1 × 106 km3. The majority of OFG was deposited when sea level was lower than today and is hosted in sandy sub‐seafloor layers that are located within 55 km of coasts in water depths less than 100 m. We present a range of geochemical, geophysical, and modeling approaches that have successfully been used to investigate OFG systems. We also propose approaches to address key scientific questions related to OFG, including whether it may be used as an unconventional source of potable water in coastal areas.
    Beschreibung: Key Points: Most known OFG is located at water depths of 〈100 m within 55 km of the coast, hosted in siliciclastic aquifers in passive margins. Key gaps in knowledge include the extent and function of OFG systems, as well as the mechanism and timing of emplacement. Isotopic tracers, jointly inverted geophysical data and 3‐D hydrological models can help address these knowledge gaps.
    Beschreibung: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) http://dx.doi.org/10.13039/100010663
    Beschreibung: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Schlagwort(e): 551 ; offshore freshened groundwater ; continental margin ; marine hydrogeology ; geochemistry ; geophysics ; modeling
    Materialart: article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Micallef, A., Person, M., Berndt, C., Bertoni, C., Cohen, D., Dugan, B., Evans, R., Haroon, A., Hensen, C., Jegen, M., Key, K., Kooi, H., Liebetrau, V., Lofi, J., Mailloux, B. J., Martin-Nagle, R., Michael, H. A., Mueller, T., Schmidt, M., Schwalenberg, K., Trembath-Reichert, E., Weymer, B., Zhang, Y., & Thomas, A. T. Offshore freshened groundwater in continental margins. Reviews of Geophysics, 59(1), (2021): e2020RG000706, https://doi.org/10.1029/2020RG000706.
    Beschreibung: First reported in the 1960s, offshore freshened groundwater (OFG) has now been documented in most continental margins around the world. In this review we compile a database documenting OFG occurrences and analyze it to establish the general characteristics and controlling factors. We also assess methods used to map and characterize OFG, identify major knowledge gaps, and propose strategies to address them. OFG has a global volume of 1 × 106 km3; it predominantly occurs within 55 km of the coast and down to a water depth of 100 m. OFG is mainly hosted within siliciclastic aquifers on passive margins and recharged by meteoric water during Pleistocene sea level lowstands. Key factors influencing OFG distribution are topography-driven flow, salinization via haline convection, permeability contrasts, and the continuity/connectivity of permeable and confining strata. Geochemical and stable isotope measurements of pore waters from boreholes have provided insights into OFG emplacement mechanisms, while recent advances in seismic reflection profiling, electromagnetic surveying, and numerical models have improved our understanding of OFG geometry and controls. Key knowledge gaps, such as the extent and function of OFG, and the timing of their emplacement, can be addressed by the application of isotopic age tracers, joint inversion of electromagnetic and seismic reflection data, and development of three-dimensional hydrological models. We show that such advances, combined with site-specific modeling, are necessary to assess the potential use of OFG as an unconventional source of water and its role in sub-seafloor geomicrobiology.
    Beschreibung: This study has received funding from the European Research Council (ERC), under the European Union's Horizon 2020 research and innovation program (grant agreement No. 677898 (MARCAN) to A. M.) and the U.S. National Science Foundation (NSF FRES 1925974 to M. P.; NSF OCE 0824368 to B. D.; and NSF EAR 1151733 to H. A. M.). T. M., B. W. and Y. Z. were funded by the SMART project through the Helmholtz European Partnering Initiative (Project ID Number PIE-0004) involving GEOMAR and the University of Malta.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2024-02-07
    Beschreibung: First reported in the 1960s, offshore freshened groundwater (OFG) has now been documented in most continental margins around the world. In this review we compile a database documenting OFG occurrences and analyse it to establish the general characteristics and controlling factors. We also assess methods used to map and characterise OFG, identify major knowledge gaps and propose strategies to address them. OFG has a global volume of 1 million km3; it predominantly occurs within 55 km of the coast and down to a water depth of 100 m. OFG is mainly hosted within siliciclastic aquifers on passive margins and recharged by meteoric water during Pleistocene sea‐level lowstands. Key factors influencing OFG distribution are topography‐driven flow, salinisation via haline convection, permeability contrasts, and the continuity/connectivity of permeable and confining strata. Geochemical and stable isotope measurements of pore waters from boreholes have provided insights into OFG emplacement mechanisms, while recent advances in seismic reflection, electromagnetic surveys and mathematical models have improved our understanding of OFG geometry and controls. Key knowledge gaps, such as the extent and function of OFG, and the timing of their emplacement, can be addressed by the application of isotopic age tracers, joint inversion of electromagnetic and seismic reflection data, and development of three‐dimensional hydrological models. We show that such advances, combined with site‐specific modelling, are necessary to assess the potential use of OFG as an unconventional source of water and its role in sub‐seafloor geomicrobiology.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...