GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: The ISME Journal, Springer Science and Business Media LLC, Vol. 10, No. 11 ( 2016-11), p. 2557-2568
    Type of Medium: Online Resource
    ISSN: 1751-7362 , 1751-7370
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2299378-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2018
    In:  Environmental Science: Processes & Impacts Vol. 20, No. 6 ( 2018), p. 913-922
    In: Environmental Science: Processes & Impacts, Royal Society of Chemistry (RSC), Vol. 20, No. 6 ( 2018), p. 913-922
    Type of Medium: Online Resource
    ISSN: 2050-7887 , 2050-7895
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2018
    detail.hit.zdb_id: 2703791-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Change Biology, Wiley, Vol. 26, No. 12 ( 2020-12), p. 6715-6728
    Abstract: Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above‐ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above‐ and below‐ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of 〉 1,500 taxa and phylotypes along a c. 3,000 m elevation gradient, by fitting species distribution models. Higher model performances for animals and plants than for soil microbes (fungi, bacteria and protists) suggest that the direct influence of topoclimate is stronger on above‐ground species than on below‐ground microorganisms. Accordingly, direct climate change effects are predicted to be stronger for above‐ground than for below‐ground taxa, whereas factors expressing local soil microclimate and geochemistry are likely more important to explain and forecast the occurrence patterns of soil microbiota. Detailed mapping and future scenarios of soil microclimate and microhabitats, together with comparative studies of interacting and ecologically dependent above‐ and below‐ground biota, are thus needed to understand and realistically forecast the future distribution of ecosystems.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Communications Biology Vol. 4, No. 1 ( 2021-04-22)
    In: Communications Biology, Springer Science and Business Media LLC, Vol. 4, No. 1 ( 2021-04-22)
    Abstract: Interspecific interactions are thought to govern the stability and functioning of microbial communities, but the influence of the spatial environment and its structural connectivity on the potential of such interactions to unfold remain largely unknown. Here we studied the effects on community growth and microbial diversity as a function of environmental connectivity, where we define environmental connectivity as the degree of habitat fragmentation preventing microbial cells from living together. We quantitatively compared growth of a naturally-derived high microbial diversity community from soil in a completely mixed liquid suspension (high connectivity) to growth in a massively fragmented and poorly connected environment (low connectivity). The low connectivity environment consisted of homogenously-sized miniature agarose beads containing random single or paired founder cells. We found that overall community growth was the same in both environments, but the low connectivity environment dramatically reduced global community-level diversity compared to the high connectivity environment. Experimental observations were supported by community growth modeling. The model predicts a loss of diversity in the low connectivity environment as a result of negative interspecific interactions becoming more dominant at small founder species numbers. Counterintuitively for the low connectivity environment, growth of isolated single genotypes was less productive than that of random founder genotype cell pairs, suggesting that the community as a whole profited from emerging positive interspecific interactions. Our work demonstrates the importance of environmental connectivity for growth of natural soil microbial communities, which aids future efforts to intervene in or restore community composition to achieve engineering and biotechnological objectives.
    Type of Medium: Online Resource
    ISSN: 2399-3642
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2919698-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2001
    In:  Archives of Microbiology Vol. 175, No. 3 ( 2001-3-29), p. 198-207
    In: Archives of Microbiology, Springer Science and Business Media LLC, Vol. 175, No. 3 ( 2001-3-29), p. 198-207
    Type of Medium: Online Resource
    ISSN: 0302-8933 , 1432-072X
    RVK:
    Language: Unknown
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2001
    detail.hit.zdb_id: 1458451-7
    detail.hit.zdb_id: 477-7
    detail.hit.zdb_id: 124824-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  Applied and Environmental Microbiology Vol. 88, No. 2 ( 2022-01-25)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 2 ( 2022-01-25)
    Abstract: Periplasmic binding proteins have been previously proclaimed as a general scaffold to design sensor proteins with new recognition specificities for nonnatural compounds. Such proteins can be integrated in bacterial bioreporter chassis with hybrid chemoreceptors to produce a concentration-dependent signal after ligand binding to the sensor cell. However, computationally designed new ligand-binding properties ignore the more general properties of periplasmic binding proteins, such as their periplasmic translocation, dynamic transition of open and closed forms, and interactions with membrane receptors. In order to better understand the roles of such general properties in periplasmic signaling behavior, we studied the subcellular localization of ribose-binding protein (RbsB) in Escherichia coli in comparison to a recently evolved set of mutants designed to bind 1,3-cyclohexanediol. As proxies for localization, we calibrated and deployed C-terminal end mCherry fluorescent protein fusions. Whereas RbsB-mCherry coherently localized to the periplasmic space and accumulated in (periplasmic) polar regions depending on chemoreceptor availability, mutant RbsB-mCherry expression resulted in high fluorescence cell-to-cell variability. This resulted in higher proportions of cells devoid of clear polar foci and of cells with multiple fluorescent foci elsewhere, suggesting poorer translocation, periplasmic autoaggregation, and mislocalization. Analysis of RbsB mutants and mutant libraries at different stages of directed evolution suggested overall improvement to more RbsB-wild-type-like characteristics, which was corroborated by structure predictions. Our results show that defects in periplasmic localization of mutant RbsB proteins partly explain their poor sensing performance. Future efforts should be directed to predicting or selecting secondary mutations outside computationally designed binding pockets, taking folding, translocation, and receptor interactions into account. IMPORTANCE Biosensor engineering relies on transcription factors or signaling proteins to provide the actual sensory functions for the target chemicals. Since for many compounds there are no natural sensory proteins, there is a general interest in methods that could unlock routes to obtaining new ligand-binding properties. Bacterial periplasmic binding proteins (PBPs) form an interesting family of proteins to explore for this purpose, because there is a large natural variety suggesting evolutionary trajectories to bind new ligands. PBPs are conserved and amenable to accurate computational binding pocket predictions. However, studying ribose-binding protein in Escherichia coli , we discovered that designed variants have defects in their proper localization in the cell, which can impair appropriate sensor signaling. This indicates that functional sensing capacity of PBPs cannot be obtained solely through computational design of the ligand-binding pocket but must take other properties of the protein into account, which are currently very difficult to predict.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular Ecology, Wiley, Vol. 28, No. 9 ( 2019-05), p. 2224-2237
    Abstract: Bacteria that engage in long‐standing associations with particular hosts are expected to evolve host‐specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep‐branching host‐specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate‐related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate‐related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.
    Type of Medium: Online Resource
    ISSN: 0962-1083 , 1365-294X
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020749-9
    detail.hit.zdb_id: 1126687-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The ISME Journal, Springer Science and Business Media LLC, Vol. 7, No. 6 ( 2013-6), p. 1173-1186
    Type of Medium: Online Resource
    ISSN: 1751-7362 , 1751-7370
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2299378-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: mSystems, American Society for Microbiology, Vol. 8, No. 2 ( 2023-04-27)
    Abstract: Strain inoculation (bioaugmentation) is a potentially useful technology to provide microbiomes with new functionalities. However, there is limited understanding of the genetic factors contributing to successful establishment of inoculants. This work aimed to characterize the genes implicated in proliferation of the monoaromatic compound-degrading Pseudomonas veronii 1YdBTEX2 in nonsterile polluted soils. We generated two independent mutant libraries by random minitransposon-delivered marker insertion followed by deep sequencing (Tn-seq) with a total of 5.0 × 10 5 unique insertions. Libraries were grown in multiple successive cycles for up to 50 generations either in batch liquid medium or in two types of soil microcosms with different resident microbial content (sand or silt) in the presence of toluene. Analysis of gene insertion abundances at different time points (passed generations of metapopulation growth), in comparison to proportions at start and to in silico generated randomized insertion distributions, allowed to define ~800 essential genes common to both libraries and ~2,700 genes with conditional fitness effects in either liquid or soil (195 of which resulted in fitness gain). Conditional fitness genes largely overlapped among all growth conditions but affected approximately twice as many functions in liquid than in soil. This indicates soil to be a more promiscuous environment for mutant growth, probably because of additional nutrient availability. Commonly depleted genes covered a wide range of biological functions and metabolic pathways, such as inorganic ion transport, fatty acid metabolism, amino acid biosynthesis, or nucleotide and cofactor metabolism. Only sparse gene sets were uncovered whose insertion caused fitness decrease exclusive for soils, which were different between silt and sand. Despite detectable higher resident bacteria and potential protist predatory counts in silt, we were, therefore, unable to detect any immediately obvious candidate genes affecting P. veronii biological competitiveness. In contrast to liquid growth conditions, mutants inactivating flagella biosynthesis and motility consistently gained strong fitness advantage in soils and displayed higher growth rates than wild type. In conclusion, although many gene functions were found to be important for growth in soils, most of these are not specific as they affect growth in liquid minimal medium more in general. This indicates that P. veronii does not need major metabolic reprogramming for proliferation in soil with accessible carbon and generally favorable growth conditions. IMPORTANCE Restoring damaged microbiomes is still a formidable challenge. Classical widely adopted approaches consist of augmenting communities with pure or mixed cultures in the hope that these display their intended selected properties under in situ conditions. Ecological theory, however, dictates that introduction of a nonresident microbe is unlikely to lead to its successful proliferation in a foreign system such as a soil microbiome. In an effort to study this systematically, we used random transposon insertion scanning to identify genes and possibly, metabolic subsystems, that are crucial for growth and survival of a bacterial inoculant ( Pseudomonas veronii ) for targeted degradation of monoaromatic compounds in contaminated nonsterile soils. Our results indicate that although many gene functions are important for proliferation in soil, they are general factors for growth and not exclusive for soil. In other words, P. veronii is a generalist that is not a priori hindered by the soil for its proliferation and would make a good bioaugmentation candidate.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2005
    In:  FEBS Journal Vol. 272, No. 7 ( 2005-03-09), p. 1756-1766
    In: FEBS Journal, Wiley, Vol. 272, No. 7 ( 2005-03-09), p. 1756-1766
    Type of Medium: Online Resource
    ISSN: 1742-464X , 1742-4658
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2005
    detail.hit.zdb_id: 2172518-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...