GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: ACS Earth and Space Chemistry, American Chemical Society (ACS), Vol. 6, No. 3 ( 2022-03-17), p. 468-481
    Type of Medium: Online Resource
    ISSN: 2472-3452 , 2472-3452
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2022
    detail.hit.zdb_id: 2883780-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Solid Earth, Copernicus GmbH, Vol. 11, No. 6 ( 2020-11-13), p. 2075-2095
    Abstract: Abstract. The strength properties of fault rocks at shearing rates spanning the transition from crystal–plastic flow to frictional slip play a central role in determining the distribution of crustal stress, strain, and seismicity in tectonically active regions. We review experimental and microphysical modelling work, which is aimed at elucidating the processes that control the transition from pervasive ductile flow of fault rock to rate-and-state-dependent frictional (RSF) slip and to runaway rupture, carried out at Utrecht University in the past 2 decades or so. We address shear experiments on simulated gouges composed of calcite, halite–phyllosilicate mixtures, and phyllosilicate–quartz mixtures performed under laboratory conditions spanning the brittle–ductile transition. With increasing shear rate (or decreasing temperature), the results consistently show transitions from (1) stable velocity-strengthening (v-strengthening) behaviour, to potentially unstable v-weakening behaviour, and (2) back to v strengthening. Sample microstructures show that the first transition seen at low shear rates and/or high temperatures represents a switch from pervasive, fully ductile deformation to frictional sliding involving dilatant granular flow in localized shear bands where intergranular slip is incompletely accommodated by creep of individual mineral grains. A recent microphysical model, which treats fault rock deformation as controlled by competition between rate-sensitive (diffusional or crystal–plastic) deformation of individual grains and rate-insensitive sliding interactions between grains (granular flow), predicts both transitions well. Unlike classical RSF approaches, this model quantitatively reproduces a wide range of (transient) frictional behaviours using input parameters with direct physical meaning, with the latest progress focusing on incorporation of dynamic weakening processes characterizing co-seismic fault rupture. When implemented in numerical codes for crustal fault slip, the model offers a single unified framework for understanding slip patch nucleation and growth to critical (seismogenic) dimensions, as well as for simulating the entire seismic cycle.
    Type of Medium: Online Resource
    ISSN: 1869-9529
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2545676-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Solid Earth Vol. 12, No. 4 ( 2021-04-22), p. 915-934
    In: Solid Earth, Copernicus GmbH, Vol. 12, No. 4 ( 2021-04-22), p. 915-934
    Abstract: Abstract. The versatility and cost efficiency of fibre-optic distributed acoustic sensing (DAS) technologies facilitate geophysical monitoring in environments that were previously inaccessible for instrumentation. Moreover, the spatio-temporal data density permitted by DAS naturally appeals to seismic array processing techniques, such as beamforming for source location. However, the measurement principle of DAS is inherently different from that of conventional seismometers, providing measurements of ground strain rather than ground motion, and so the suitability of traditional seismological methods requires in-depth evaluation. In this study, we evaluate the performance of a DAS array in the task of seismic beamforming, in comparison with a co-located nodal seismometer array. We find that, even though the nodal array achieves excellent performance in localising a regional ML 4.3 earthquake, the DAS array exhibits poor waveform coherence and consequently produces inadequate beamforming results that are dominated by the signatures of shallow scattered waves. We demonstrate that this behaviour is likely inherent to the DAS measurement principle, and so new strategies need to be adopted to tailor array processing techniques to this emerging measurement technology. One strategy demonstrated here is to convert the DAS strain rates to particle velocities by spatial integration using the nodal seismometer recordings as a reference, which dramatically improves waveform coherence and beamforming performance and warrants new types of “hybrid” array design that combine dense DAS arrays with sparse seismometer arrays.
    Type of Medium: Online Resource
    ISSN: 1869-9529
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2545676-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Solid Earth Vol. 11, No. 6 ( 2020-11-25), p. 2245-2256
    In: Solid Earth, Copernicus GmbH, Vol. 11, No. 6 ( 2020-11-25), p. 2245-2256
    Abstract: Abstract. Human subsurface activities induce significant hazard by (re-)activating slip on faults, which are ubiquitous in geological reservoirs. Laboratory and field (decametric-scale) fluid injection experiments provide insights into the response of faults subjected to fluid pressure perturbations, but assessing the long-term stability of fault slip remains challenging. Numerical models offer means to investigate a range of fluid injection scenarios and fault zone complexities and require frictional parameters (and their uncertainties) constrained by experiments as an input. In this contribution, we propose a robust approach to extract relevant microphysical parameters that govern the deformation behaviour of laboratory samples. We apply this Bayesian approach to the fluid injection experiment of Cappa et al. (2019) and examine the uncertainties and trade-offs between parameters. We then continue to analyse the field injection experiment reported by Cappa et al. (2019), from which we conclude that the fault-normal displacement is much larger than expected from the adopted microphysical model (the Chen–Niemeijer–Spiers model), indicating that fault structure and poro-elastic effects dominate the observed signal. This demonstrates the importance of using a microphysical model with physically meaningful constitutive parameters, as it clearly delineates scenarios where additional mechanisms need to be considered.
    Type of Medium: Online Resource
    ISSN: 1869-9529
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2545676-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Journal of Geophysical Research: Solid Earth Vol. 125, No. 4 ( 2020-04)
    In: Journal of Geophysical Research: Solid Earth, American Geophysical Union (AGU), Vol. 125, No. 4 ( 2020-04)
    Abstract: We unify two classes of frictional healing behavior with a microphysical model We derive analytical expressions for frictional healing parameters (healing rate, cutoff time, and maximum fault strengthening) We adopt the physically based model to simulate natural seismic cycle behavior
    Type of Medium: Online Resource
    ISSN: 2169-9313 , 2169-9356
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Radiation Oncology, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2020-12)
    Abstract: The STAR-TReC trial is an international multi-center, randomized, phase II study assessing the feasibility of short-course radiotherapy or long-course chemoradiotherapy as an alternative to total mesorectal excision surgery. A new target volume is used for both (chemo)radiotherapy arms which includes only the mesorectum. The treatment planning QA revealed substantial variation in dose to organs at risk (OAR) between centers. Therefore, the aim of this study was to determine the treatment plan variability in terms of dose to OAR and assess the effect of a national study group meeting on the quality and variability of treatment plans for mesorectum-only planning for rectal cancer. Methods Eight centers produced 25 × 2 Gy treatment plans for five cases. The OAR were the bowel cavity, bladder and femoral heads. A study group meeting for the participating centers was organized to discuss the planning results. At the meeting, the values of the treatment plan DVH parameters were distributed among centers so that results could be compared. Subsequently, the centers were invited to perform replanning if they considered this to be necessary. Results All treatment plans, both initial planning and replanning, fulfilled the target constraints. Dose to OAR varied considerably for the initial planning, especially for dose levels below 20 Gy, indicating that there was room for trade-offs between the defined OAR. Five centers performed replanning for all cases. One center did not perform replanning at all and two centers performed replanning on two and three cases, respectively. On average, replanning reduced the bowel cavity V20Gy by 12.6%, bowel cavity V10Gy by 22.0%, bladder V35Gy by 14.7% and bladder V10Gy by 10.8%. In 26/30 replanned cases the V10Gy of both the bowel cavity and bladder was lower, indicating an overall lower dose to these OAR instead of a different trade-off. In addition, the bowel cavity V10Gy and V20Gy showed more similarity between centers. Conclusions Dose to OAR varied considerably between centers, especially for dose levels below 20 Gy. The study group meeting and the distribution of the initial planning results among centers resulted in lower dose to the defined OAR and reduced variability between centers after replanning. Trial registration The STAR-TReC trial, ClinicalTrials.gov Identifier: NCT02945566. Registered 26 October 2016, https://clinicaltrials.gov/ct2/show/NCT02945566 ).
    Type of Medium: Online Resource
    ISSN: 1748-717X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2224965-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 66, No. 1 ( 2022-01-18)
    Abstract: Antiviral therapies are urgently needed to treat and limit the development of severe COVID-19 disease. Ivermectin, a broad-spectrum anti-parasitic agent, has been shown to have anti-SARS-CoV-2 activity in Vero cells at a concentration of 5 μM. These limited in vitro results triggered the investigation of ivermectin as a treatment option to alleviate COVID-19 disease. However, in April 2021, the World Health Organization stated the following: “The current evidence on the use of ivermectin to treat COVID-19 patients is inconclusive.” It is speculated that the in vivo concentration of ivermectin is too low to exert a strong antiviral effect. Here, we performed a head-to-head comparison of the antiviral activity of ivermectin and the structurally related, but metabolically more stable moxidectin in multiple in vitro models of SARS-CoV-2 infection, including physiologically relevant human respiratory epithelial cells. Both moxidectin and ivermectin exhibited antiviral activity in Vero E6 cells. Subsequent experiments revealed that these compounds predominantly act on the steps following virus cell entry. Surprisingly, however, in human-airway-derived cell models, both moxidectin and ivermectin failed to inhibit SARS-CoV-2 infection, even at concentrations of 10 μM. These disappointing results call for a word of caution in the interpretation of anti-SARS-CoV-2 activity of drugs solely based on their activity in Vero cells. Altogether, these findings suggest that even using a high-dose regimen of ivermectin, or switching to another drug in the same class, is unlikely to be useful for treatment of SARS-CoV-2 in humans.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Oncologist, Oxford University Press (OUP), Vol. 24, No. 4 ( 2019-04-01), p. e149-e153
    Abstract: Dermatological adverse events have frequently been reported after immune checkpoint inhibition. When an adverse event occurs during combination of immune checkpoint inhibition with chemotherapy, the question arises which agent is responsible. Unnecessary withdrawal of either chemotherapy or immunotherapy could lead to suboptimal treatment outcomes. Here we report on two patients who developed a cutaneous drug reaction with fever during treatment with paclitaxel, carboplatin, radiotherapy, and PD-L1 inhibition (atezolizumab) for resectable esophageal adenocarcinoma. In the first case atezolizumab was suspected, and in the second paclitaxel. We discuss the clinical manifestation, treatment, and pathophysiology underlying both cases.
    Type of Medium: Online Resource
    ISSN: 1083-7159 , 1549-490X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2023829-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Surgical Neurology International, Scientific Scholar, Vol. 13 ( 2022-02-11), p. 43-
    Abstract: Ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) belong to the group of low-grade epilepsy-associated tumors (LEAT) and are the most prevalent tumor types found in patients undergoing epilepsy surgery. Histopathological differentiation between GG and DNET can be difficult on biopsies due to limited tumor tissue. Case Description: Here, we present a rare case where a low-grade tumor was initially classified as DNET, based on biopsy findings and unfortunately dedifferentiated within 10 years into a glioblastoma multiforme. After gross total resection, the initial tumor was reclassified as GG. Conclusion: This case illustrates the diagnostic challenges of LEAT, especially on biopsy material. Therefore, we advocate to counsel for complete resection and histopathological diagnosis utilizing tumor markers to confirm the nature of the tumor and to advice type of follow-up and eventual concurrent treatment.
    Type of Medium: Online Resource
    ISSN: 2152-7806
    Language: English
    Publisher: Scientific Scholar
    Publication Date: 2022
    detail.hit.zdb_id: 2567759-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...