GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oikos, Wiley, Vol. 128, No. 1 ( 2019-01), p. 113-123
    Abstract: Systematic comparisons of species interactions in urban versus rural environments can improve our understanding of shifts in ecological processes due to urbanization. However, such studies are relatively uncommon and the mechanisms driving urbanization effects on species interactions (e.g. between plants and insect herbivores) remain elusive. Here we investigated the effects of urbanization on leaf herbivory by insect chewers and miners associated with the English oak Quercus robur by sampling trees in rural and urban areas throughout most of the latitudinal distribution of this species. In performing these comparisons, we also controlled for the size of the urban areas (18 cities) and gathered data on CO 2 emissions. In addition, we assessed whether urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits (phosphorus and nitrogen), and whether such changes correlated with herbivory levels. Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In addition, we found that leaves from urban locations had lower levels of chemical defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen and phosphorus) compared to leaves in rural locations. The magnitude of urbanization effects on herbivory and leaf defences was not contingent upon city size. Importantly, while the effects of urbanization on chemical defences were associated with CO 2 emissions, changes in leaf chewer damage were not associated with either leaf traits or CO 2 levels. These results suggest that effects of urbanization on herbivory occur through mechanisms other than changes in the plant traits measured here. Overall, our simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances our understanding of the main drivers of urbanization effects on plant–herbivore interactions.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecography, Wiley, Vol. 2022, No. 1 ( 2022-01)
    Abstract: The world is rapidly urbanizing, thereby transforming natural landscapes and changing the abundance and distribution of organisms. However, insights into the effects of urbanization on species interactions, and plant–pathogen interactions in particular, are lacking. We investigated the effects of urbanization on powdery mildew infection on Quercus robur at continental and within‐city scales. At the continental scale, we compared infection levels between urban and rural areas of different‐sized cities in Europe, and investigated whether plant traits, climatic variables and CO 2 emissions mediated the effect of urbanization on infection levels. Within one large city (Stockholm, Sweden), we further explored whether local habitat features and spatial connectivity influenced infection levels during multiple years. At the continental scale, infection severity was consistently higher on trees in urban than rural areas, with some indication that temperature mediated this effect. Within Stockholm city, temperature had no effect, while local accumulation of leaf litter negatively affected powdery mildew incidence in one out of three years, and more connected trees had lower infection levels. This study is the first to describe the effects of urbanization on plant–pathogen interactions both within and among cities, and to uncover the potential mechanisms behind the observed patterns at each scale.
    Type of Medium: Online Resource
    ISSN: 0906-7590 , 1600-0587
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2024917-2
    detail.hit.zdb_id: 1112659-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Plant Science Vol. 13 ( 2022-8-3)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-8-3)
    Abstract: Plants interact with a multitude of microorganisms and insects, both below- and above ground, which might influence plant metabolism. Despite this, we lack knowledge of the impact of natural soil communities and multiple aboveground attackers on the metabolic responses of plants, and whether plant metabolic responses to single attack can predict responses to dual attack. We used untargeted metabolic fingerprinting (gas chromatography-mass spectrometry, GC-MS) on leaves of the pedunculate oak, Quercus robur , to assess the metabolic response to different soil microbiomes and aboveground single and dual attack by oak powdery mildew ( Erysiphe alphitoides ) and the common oak aphid ( Tuberculatus annulatus ). Distinct soil microbiomes were not associated with differences in the metabolic profile of oak seedling leaves. Single attacks by aphids or mildew had pronounced but different effects on the oak leaf metabolome, but we detected no difference between the metabolomes of healthy seedlings and seedlings attacked by both aphids and powdery mildew. Our findings show that aboveground attackers can have species-specific and non-additive effects on the leaf metabolome of oak. The lack of a metabolic signature detected by GC-MS upon dual attack might suggest the existence of a potential negative feedback, and highlights the importance of considering the impacts of multiple attackers to gain mechanistic insights into the ecology and evolution of species interactions and the structure of plant-associated communities, as well as for the development of sustainable strategies to control agricultural pests and diseases and plant breeding.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Journal of Ecology Vol. 109, No. 7 ( 2021-07), p. 2769-2779
    In: Journal of Ecology, Wiley, Vol. 109, No. 7 ( 2021-07), p. 2769-2779
    Abstract: Plants are attacked by a large diversity of pathogens. These pathogens can affect plant growth and fitness directly but also indirectly by inducing changes in the host plant that affect interactions with beneficial and antagonistic insects. Yet, we lack insights into the relative importance of direct and indirect effects of pathogens on their host plants, and how these effects differ among pathogen species. In this study, we examined four fungal pathogens on the wood anemone Anemone nemorosa . We used field observations to record the impacts of each pathogen species on plant growth and fitness throughout the season, and experimental hand pollination and insect feeding trials to assess whether fitness impacts were mediated by pathogen‐induced changes in plant–pollinator and plant–herbivore interactions. Three out of four pathogens negatively affected plant size, and pathogens differed strongly in their effect on plant architecture. Infected plants had lower fitness, but this effect was not mediated by pollinators or herbivores. Even so, two out of four pathogens reduced herbivory on anemones in the field, and we found negative effects of pathogen infection on herbivore preference and performance in feeding trials. Synthesis . Our results are of broader significance in two main respects. First, we demonstrated that pathogens negatively affected plant growth and fitness, and that the magnitude of these effects varied among pathogen species, suggesting that pathogens constitute important selective agents that differ in strength. Second, direct effects on plant fitness were more important than effects mediated by beneficial and antagonistic insects. In addition, although we did not detect insect‐mediated effects on plant fitness, the negative effects of some pathogens on herbivore preference and performance indicate that pathogen communities influence the distribution and abundance of herbivores.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  New Phytologist Vol. 233, No. 6 ( 2022-03), p. 2585-2598
    In: New Phytologist, Wiley, Vol. 233, No. 6 ( 2022-03), p. 2585-2598
    Abstract: Plant pathogen traits, such as transmission mode and overwintering strategy, may have important effects on dispersal and persistence, and drive disease dynamics. Still, we lack insights into how life‐history traits influence spatiotemporal disease dynamics. We adopted a multifaceted approach, combining experimental assays, theory and field surveys, to investigate whether information about two pathogen life‐history traits – infectivity and overwintering strategy – can predict pathogen metapopulation dynamics in natural systems. For this, we focused on four fungal pathogens (two rust fungi, one chytrid fungus and one smut fungus) on the forest herb Anemone nemorosa . Pathogens infecting new plants mostly via spores (the chytrid and smut fungi) had higher patch occupancies and colonization rates than pathogens causing mainly systemic infections and overwintering in the rhizomes (the two rust fungi). Although the rust fungi more often occupied well‐connected plant patches, the chytrid and smut fungi were equally or more common in isolated patches. Host patch size was positively related to patch occupancy and colonization rates for all pathogens. Predicting disease dynamics is crucial for understanding the ecological and evolutionary dynamics of host–pathogen interactions, and to prevent disease outbreaks. Our study shows that combining experiments, theory and field observations is a useful way to predict disease dynamics.
    Type of Medium: Online Resource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 208885-X
    detail.hit.zdb_id: 1472194-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Oecologia Vol. 197, No. 2 ( 2021-10), p. 447-457
    In: Oecologia, Springer Science and Business Media LLC, Vol. 197, No. 2 ( 2021-10), p. 447-457
    Type of Medium: Online Resource
    ISSN: 0029-8549 , 1432-1939
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1462019-4
    detail.hit.zdb_id: 123369-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Oikos, Wiley, Vol. 2022, No. 12 ( 2022-12)
    Abstract: Plants interact with a large diversity of microbes and insects, both below and above ground. While studies have shown that belowground microbes affect the performance of plants and aboveground organisms, we lack insights into how belowground microbial communities may shape interactions between aboveground pathogens and insects. We investigated how soil microbiomes and aboveground organisms affect plant growth and development, and whether differences in soil microbiomes influence interactions between aboveground organisms. We conducted a growth‐chamber experiment with oak seedlings Quercus robur growing in three soils with similar abiotic soil properties but with distinct natural soil microbiomes. Seedlings were subjected to single or dual attack by powdery mildew Erysiphe alphitoides and aphids Tuberculatus annulatus , either in the presence or absence of prior attack by a free‐feeding caterpillar Phalera bucephala . Soil microbiomes were associated with differences in seedling height, and seedlings with multiple aboveground organisms had more but smaller leaves than healthy seedlings. The soil microbiome affected the severity of powdery mildew infection, and mediated the impact of co‐occurring aboveground organisms on aphid population size. Our study highlights that plant performance is affected by natural soil microbiomes as well as aboveground organisms, and that natural soil microbiomes can affect interactions between pathogens and insects. These findings are important to understand species interactions in natural systems, as well as for practical applications, such as manipulation of soil microbiomes to manage agricultural pests and diseases.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The Royal Society ; 2020
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 287, No. 1935 ( 2020-09-30), p. 20201303-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 287, No. 1935 ( 2020-09-30), p. 20201303-
    Abstract: Insects and pathogens frequently exploit the same host plant and can potentially impact each other's performance. However, studies on plant–pathogen–insect interactions have mainly focused on a fixed temporal setting or on a single interaction partner. In this study, we assessed the impact of time of attacker arrival on the outcome and symmetry of interactions between aphids ( Tuberculatus annulatus ), powdery mildew ( Erysiphe alphitoides ), and caterpillars ( Phalera bucephala ) feeding on pedunculate oak, Quercus robur , and explored how single versus multiple attackers affect oak performance. We used a multifactorial greenhouse experiment in which oak seedlings were infected with either zero, one, two, or three attackers, with the order of attacker arrival differing among treatments. The performances of all involved organisms were monitored throughout the experiment. Overall, attackers had a weak and inconsistent impact on plant performance. Interactions between attackers, when present, were asymmetric. For example, aphids performed worse, but powdery mildew performed better, when co-occurring. Order of arrival strongly affected the outcome of interactions, and early attackers modified the strength and direction of interactions between later-arriving attackers. Our study shows that interactions between plant attackers can be asymmetric, time-dependent, and species specific. This is likely to shape the ecology and evolution of plant–pathogen–insect interactions.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    The Royal Society ; 2017
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 284, No. 1866 ( 2017-11-15), p. 20171594-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 284, No. 1866 ( 2017-11-15), p. 20171594-
    Abstract: An ovipositing insect experiences many sensory challenges during her search for a suitable host plant. These sensory challenges become exceedingly pronounced when host range increases, as larger varieties of sensory inputs have to be perceived and processed in the brain. Neural capacities can be exceeded upon information overload, inflicting costs on oviposition accuracy. One presumed generalist strategy to diminish information overload is the acquisition of a focused search during its lifetime based on experiences within the current environment, a strategy opposed to a more genetically determined focus expected to be seen in relative specialists. We hypothesized that a broader host range is positively correlated with mushroom body (MB) plasticity, a brain structure related to learning and memory. To test this hypothesis, butterflies with diverging host ranges ( Polygonia c-album , Aglais io and Aglais urticae ) were subjected to differential environmental complexities for oviposition, after which ontogenetic MB calyx volume differences were compared among species. We found that the relative generalist species exhibited remarkable plasticity in ontogenetic MB volumes; MB growth was differentially stimulated based on the complexity of the experienced environment. For relative specialists, MB volume was more canalized. All in all, this study strongly suggests an impact of host range on brain plasticity in Nymphalid butterflies.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2017
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 53, No. 6 ( 2021-06), p. 840-860
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...