GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: JAMA Network Open, American Medical Association (AMA), Vol. 6, No. 2 ( 2023-02-10), p. e2255709-
    Abstract: Parenteral enoxaparin is a preferred anticoagulant used in the acute phase for patients with acute coronary syndrome (ACS). The safety and efficacy of short-term low-dose rivaroxaban in this clinical setting remain unknown. Objective To compare the safety and efficacy of rivaroxaban vs enoxaparin in the acute phase of ACS. Design, Setting, and Participants This multicenter, prospective, open-label, active-controlled, equivalence and noninferiority trial was conducted from January 2017 through May 2021 with a 6-month follow-up at 21 hospitals in China. Participants included patients with ACS missing the primary reperfusion window or before selective revascularization. Data were analyzed from November 2021 to November 2022. Interventions Participants were randomized 1:1:1 to oral rivaroxaban 2.5 mg or 5 mg or 1 mg/kg subcutaneous enoxaparin twice daily in addition to dual antiplatelet therapy (DAPT; aspirin 100 mg and clopidogrel 75 mg once daily) for a mean of 3.7 days. Main Outcomes and Measures The primary safety end point was bleeding events, as defined by the International Society on Thrombosis and Haemostasis, and the primary efficacy end point was major adverse cardiovascular events (MACEs), including cardiac death, myocardial infarction, rerevascularization, or stroke during the 6-month follow-up. Results Of 2055 enrolled patients, 2046 (99.6%) completed the trial (mean [SD] age 65.8 [8.2] years, 1443 [70.5%] male) and were randomized to enoxaparin (680 patients), rivaroxaban 2.5 mg (683 patients), or rivaroxaban 5 mg (683 patients). Bleeding rates were 46 patients (6.8%) in the enoxaparin group, 32 patients (4.7%) in the rivaroxaban 2.5 mg group, and 36 patients (5.3%)in the rivaroxaban 5 mg group (rivaroxaban 2.5 mg vs enoxaparin: noninferiority hazard ratio [HR] , 0.68; 95% CI, 0.43 to 1.07; P  = .005; rivaroxaban 5 mg vs enoxaparin: noninferiority HR, 0.88; 95% CI, 0.70 to 1.09; P  = .001). The incidence of MACEs was similar among groups, and noninferiority was reached in the rivaroxaban 5 mg group (HR, 0.60; 95% CI, 0.31 to 1.16, P  = .02) but not in the rivaroxaban 2.5 mg group (HR, 0.68; 95% CI, 0.36 to 1.30; P  = .05) compared with the enoxaparin group. Conclusions and Relevance In this equivalence and noninferiority trial, oral rivaroxaban 5 mg showed noninferiority to subcutaneous enoxaparin (1 mg/kg) for patients with ACS treated with DAPT during the acute phase. Results of this feasibility study provide useful information for designing future randomized clinical trials with sufficient sample sizes. Trial Registration ClinicalTrials.gov Identifier: NCT03363035
    Type of Medium: Online Resource
    ISSN: 2574-3805
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    detail.hit.zdb_id: 2931249-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Environmental and Experimental Botany, Elsevier BV, Vol. 211 ( 2023-07), p. 105341-
    Type of Medium: Online Resource
    ISSN: 0098-8472
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1497561-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 12 ( 2022-06-15), p. 6683-
    Abstract: Cold stress, triggered by particularly low temperatures, is one of the most severe forms of abiotic stress in pepper plants and a major constraint to the global pepper industry, threatening crop production and food security. To acclimatize to extreme conditions, the plant undergoes numerous modifications, including genetic and metabolic modulations. A thorough study of both the genetic and metabolic alterations of plants in response to cold stress is vital to understanding and developing the cold stress resistance mechanism. This study implemented transcriptome and metabolome analyses to evaluate the cold stress response in cold-tolerant and cold-sensitive pepper species. The weighted gene co-expression network revealed three significant modules related to cold stress tolerance in Capsicum pubescens. We identified 17 commonly enriched genes among both species at different time points in 10 different comparisons, including the AP2 transcription factor, LRR receptor-like serine, hypersensitivity-related 4-like protein, and uncharacterized novel.295 and novel.6172 genes. A pathway enrichment analysis indicated that these DEGs were mainly associated with the MAPK signaling pathway, hormone signaling pathway, and primary and secondary metabolism. Additionally, 21 significantly differentially accumulated metabolites (DAMs) were identified in both species after 6 h of cold stress. A transcriptome and metabolome integrated analysis revealed that 54 genes correlated with metabolites enriched in five different pathways. Most genes and metabolites involved in carbohydrate metabolism, the TCA cycle, and flavonoid biosynthesis pathways were upregulated in cold-tolerant plants under cold stress. Together, the results of this study provide a comprehensive gene regulatory and metabolic network in response to cold stress and identified some key genes and metabolic pathways involved in pepper cold tolerance. This study lays a foundation for the functional characterization and development of pepper cultivars with improved cold tolerance.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 20, No. 13 ( 2019-07-06), p. 3321-
    Abstract: Radish is a crucial vegetable crop of the Brassicaceae family with many varieties and large cultivated area in China. Radish is a cool season crop, and there are only a few heat tolerant radish varieties in practical production with little information concerning the related genes in response to heat stress. In this work, some physiological parameter changes of young leaves under short-term heat stress were detected. Furthermore, we acquired 1802 differentially expressed mRNAs (including encoding some heat shock proteins, heat shock factor and heat shock-related transcription factors), 169 differentially expressed lncRNAs and three differentially expressed circRNAs (novel_circ_0000265, novel_circ_0000325 and novel_circ_0000315) through strand-specific RNA sequencing technology. We also found 10 differentially expressed miRNAs (ath-miR159b-3p, athmiR159c, ath-miR398a-3p, athmiR398b-3p, ath-miR165a-5p, ath-miR169g-3p, novel_86, novel_107, novel_21 and ath-miR171b-3p) by small RNA sequencing technology. Through function prediction and enrichment analysis, our results suggested that the significantly possible pathways/complexes related to heat stress in radish leaves were circadian rhythm-plant, photosynthesis—antenna proteins, photosynthesis, carbon fixation in photosynthetic organisms, arginine and proline metabolism, oxidative phosphorylation, peroxisome and plant hormone signal transduction. Besides, we identified one lncRNA–miRNA–mRNAs combination responsive to heat stress. These results will be helpful for further illustration of molecular regulation networks of how radish responds to heat stress.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Signaling Vol. 12, No. 570 ( 2019-02-26)
    In: Science Signaling, American Association for the Advancement of Science (AAAS), Vol. 12, No. 570 ( 2019-02-26)
    Abstract: Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that express an invariant T cell receptor (TCR), which recognizes glycolipid antigens presented on CD1d molecules. These cells are phenotypically and functionally distinct from conventional T cells. When we characterized the metabolic activity of iNKT cells, consistent with their activated phenotype, we found that they had much less mitochondrial respiratory capacity but increased glycolytic activity in comparison to naïve conventional CD4 + T cells. After TCR engagement, iNKT cells further increased aerobic glycolysis, which was important for the expression of interferon-γ (IFN-γ). Glycolytic metabolism promoted the translocation of hexokinase-II to mitochondria and the activation of mammalian target of rapamycin complex 2 (mTORC2). Inhibiting glycolysis reduced the activity of Akt and PKCθ, which inhibited TCR recycling and accumulation within the immune synapse. Diminished TCR accumulation in the immune synapse reduced the activation of proximal and distal TCR signaling pathways and IFN-γ production in activated iNKT cells. Our studies demonstrate that glycolytic metabolism augments TCR signaling duration and IFN-γ production in iNKT cells by increasing TCR recycling.
    Type of Medium: Online Resource
    ISSN: 1945-0877 , 1937-9145
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...