GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-6-30)
    Abstract: The air-sea gas transfer velocity ( K 660 ) is typically assessed as a function of the 10-m neutral wind speed ( U 10n ), but there remains substantial uncertainty in this relationship. Here K 660 of CO 2 derived with the eddy covariance (EC) technique from eight datasets (11 research cruises) are reevaluated with consistent consideration of solubility and Schmidt number and inclusion of the ocean cool skin effect. K 660 shows an approximately linear dependence with the friction velocity ( u * ) in moderate winds, with an overall relative standard deviation (relative standard error) of about 20% (7%). The largest relative uncertainty in K 660 occurs at low wind speeds, while the largest absolute uncertainty in K 660 occurs at high wind speeds. There is an apparent regional variation in the steepness of the K 660 - u * relationships: North Atlantic ≥ Southern Ocean & gt; other regions (Arctic, Tropics). Accounting for sea state helps to collapse some of this regional variability in K 660 using the wave Reynolds number in very large seas and the mean squared slope of the waves in small to moderate seas. The grand average of EC-derived K 660 ( − 1.47   +   76.67 u * +   20.48 u * 2   o r   0.36   +   1.203 U 10 n +   0.167 U 10 n 2 ) is similar at moderate to high winds to widely used dual tracer-based K 660 parametrization, but consistently exceeds the dual tracer estimate in low winds, possibly in part due to the chemical enhancement in air-sea CO 2 exchange. Combining the grand average of EC-derived K 660 with the global distribution of wind speed yields a global average transfer velocity that is comparable with the global radiocarbon ( 14 C) disequilibrium, but is ~20% higher than what is implied by dual tracer parametrizations. This analysis suggests that CO 2 fluxes computed using a U 10 n 2 dependence with zero intercept (e.g., dual tracer) are likely underestimated at relatively low wind speeds.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Chemosphere, Elsevier BV, Vol. 338 ( 2023-10), p. 139479-
    Type of Medium: Online Resource
    ISSN: 0045-6535
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1496851-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Chemistry and Physics Vol. 19, No. 3 ( 2019-02-11), p. 1819-1834
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 3 ( 2019-02-11), p. 1819-1834
    Abstract: Abstract. Eddy covariance measurements show gas transfer velocity suppression at medium to high wind speed. A wind–wave interaction described by the transformed Reynolds number is used to characterize environmental conditions favoring this suppression. We take the transformed Reynolds number parameterization to review the two most cited wind speed gas transfer velocity parameterizations: Nightingale et al. (2000) and Wanninkhof (1992, 2014). We propose an algorithm to adjust k values for the effect of gas transfer suppression and validate it with two directly measured dimethyl sulfide (DMS) gas transfer velocity data sets that experienced gas transfer suppression. We also show that the data set used in the Nightingale 2000 parameterization experienced gas transfer suppression. A compensation of the suppression effect leads to an average increase of 22 % in the k vs. u relationship. Performing the same correction for Wanninkhof 2014 leads to an increase of 9.85 %. Additionally, we applied our gas transfer suppression algorithm to global air–sea flux climatologies of CO2 and DMS. The global application of gas transfer suppression leads to a decrease of 11 % in DMS outgassing. We expect the magnitude of Reynolds suppression on any global air–sea gas exchange to be about 10 %.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...