GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 107, No. 9 ( 2022-02-10), p. 2133-2143
    Abstract: Type 2B von Willebrand disease (VWD) is caused by gain-of-function mutations in von Willebrand factor (VWF). Increased VWF affinity for GPIba results in loss of high molecular weight multimers and enhanced platelet clearance, both contributing to the bleeding phenotype. Severity of the symptoms vary among type 2B VWD patients, with some developing thrombocytopenia only under stress conditions. Efforts have been made to study underlying pathophysiology for platelet abnormalities, but animal studies have been limited because of species specificity in the VWF-GPIba interaction. Here, we generated a severe form of type 2B VWD (p.V1316M) knockin mice in the context of human VWF exon 28 (encoding A1 and A2 domains) and crossed them with human GPIba transgenic strain. Heterozygous mutant mice recapitulated the phenotype of type 2B VWD in autosomal dominant manner and presented severe macrothrombocytopenia. Of note, platelets remaining in the circulation had extracytoplasmic GPIba shed-off from the cell surface. Reciprocal bone marrow transplantation determined mutant VWF produced from endothelial cells as the major cause of the platelet phenotype in type 2B VWD mice. Moreover, altered megakaryocyte maturation in the bone marrow and enhanced extramedullary megakaryopoiesis in the spleen were observed. Interestingly, injection of anti-VWF A1 blocking antibody (NMC-4) not only ameliorated platelet count and GPIba expression, but also reversed MK ploidy shift. In conclusion, we present a type 2B VWD mouse model with humanized VWF-GPIba interaction which demonstrated direct influence of aberrant VWF-GPIba binding on megakaryocytes.
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2022
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1476-1476
    Abstract: Aminoacyl-tRNA synthetases (aaRSs) are enzymes with a key role in the first step of protein synthesis by catalyzing the esterification of a specific cognate amino acid or its precursor to one of all its compatible cognate tRNAs to form an aminoacyl-tRNA. During evolution, eukaryotic aaRSs have acquired additional domains and motifs conferring non-canonical functions beyond translation, such as expressing multiple cytokine activities. Repurposing aaRSs often requires an activation step and the first reported example was for human tyrosyl-tRNA synthetase (YRS), which is abundant in platelets and released from their α-granules upon thrombin or arachidonic acid stimulation. As shown by previous work, activated YRS (YRSACT) - created by natural proteolysis, alternative splicing, or rational mutagenesis - can express the activity of different cytokines. In the current study, we demonstrate that recombinant YRSACT rendered active by the gain-of-function mutation Tyr341Ala exhibits a previously unrecognized role in megakaryocytopoiesis and thrombocytopoiesis. When administered in vivo in C57BL/6 wild type (WT) mice, recombinant YRSACT caused platelet increase both under baseline conditions as well as in a model of immune-mediated thrombocytopenia in which mice are made thrombocytopenic by injection of rat anti-mouse glycoprotein (GP) Ib monoclonal IgG. When WT mouse bone marrow (BM) cells were cultured ex vivo for 3 days, YRSACT treatment increased the number of megakaryocytes by 3.0-fold, particularly of megakaryocytes with 16N ploidy. This effect was independent of thrombopoietin (TPO) signaling because YRSACT could support the expansion of c-mpl-/- (TPO receptor knock-out) mouse megakaryocytes. YRSACT had no effect on purified mouse CD41+ or Sca1+ hematopoietic progenitor cells, indicating that YRS-dependent stimulation likely required the contribution of other cells present in BM cultures. When mouse BM cells were stimulated with different doses of YRSACT, the number of F4/80+ monocyte/macrophages as well as of megakaryocytes increased in a dose-dependent manner. Mechanistic analysis revealed YRSACT targets the Toll-like receptor (TLR) pathway signaling through MyD88 in monocyte/macrophages, thereby enhancing release of cytokines that influence megakaryocyte development. In vitro binding assay showed that YRSACT is capable of binding to TLR2 and TLR4. The effect of YRSACT was attenuated in the BM cells derived from TLR2-/- mice and was abolished in MyD88-/- mice. Among the cytokines with synthesis induced by YRSACT, IL-6 plays a pivotal role in megakaryocyte development. Thus, we tested the effect of YRSACT on megakaryocytes obtained by culturing BM cell derived from IL-6-/- mice and found that no effect was apparent. The stimulatory effect of YRSACT on megakaryocytopoiesis was confirmed with human CD41+ megakaryocyte progenitors differentiated from CD34+ hematopoietic stem cells derived from peripheral blood. In conclusion, we have documented a previously unrecognized activity of YRSACT that results in enhanced megakaryocytopoiesis and platelet production. These studies document a mechanistically distinct aaRS-directed hematological activity that highlights new potential approaches to stimulating platelet production for treating thrombocytopenia and for improving ex vivo preparation of platelet concentrates for transfusion. Disclosures Belani: aTyr Pharma: Consultancy, Equity Ownership, Patents & Royalties. Do:aTyr Pharma: Employment, Equity Ownership, Patents & Royalties. Yang:aTyr Pharma: Consultancy, Patents & Royalties, Research Funding. Schimmel:aTyr Pharma: Consultancy, Equity Ownership, Patents & Royalties, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 474-474
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 474-474
    Abstract: Abstract 474 Thrombin (Th) is a pleiotropic protease with prothrombotic, anticoagulant and proinflammatory functions. We have characterized the mechanisms through which the binding of Th to glycoprotein (GP) Ibα, a component of the GPIb-IX-V complex on platelets, may regulate these activities. First, we tested the hypothesis, based on crystallographic evidence, that both exosite I and II of α-Th are required for binding to GPIbα. For these studies, in addition to α-Th we used meizothrombin (M-Th), a precursor with functional exosite I but without exosite II, and γ-Th, a degradation product of α-Th with intact exosite II but structurally deranged exosite I. For experiments with purified components, we used a fully sulphated recombinant fragment of human GPIbα (residues -2-290; herein designated GPIbαN) with wild-type sequence (WT) or with the single mutations Y279F (prevents sulphation) or D277N. These residues are predicted to influence predominantly or exclusively the interaction with thrombin exosite I or II, respectively. In experiments measuring the formation of a stable complex in solution, GPIbαN-WT bound α-Th and γ-Th with similar characteristics, while there was no complex formed with M-Th under the same conditions. The mutation Y279F had only a modest effect, while the mutation D277N abolished formation of all complexes, indicating that exosite II is predominantly involved in binding a GPIbα fragment in solution. To obtain more biologically relevant findings, we generated BL6 mice with platelets expressing human GPIbα replacing the corresponding murine component in the GPIb-IX-V complex, either with wild-type sequence (h-WT strain) or with the mutations Y279F (h-279F strain) or D277N (h-277N strain). All had comparable surface expression of GPIbα (∼7,000 molecules/platelet). Platelets from h-WT mice bound α-Th and γ-Th in a saturable manner and with a similar apparent kd (∼50 nM) as human platelets. Because we could not label thrombin directly without affecting binding to platelet GPIbα, we used an indirect approach with biotin-PPACK inserted into the active site of α-Th, γ-Th or M-Th detected by fluorescent streptavidin-PE. With this method, there was no demonstrable M-Th binding to platelet GPIbα. Platelets from h-279F mice showed a markedly decreased binding of α-Th (∼16% of that seen with h-WT platelets and kd of 450 nM) and no binding of γ-Th. Neither α-Th or γ-Th bound to h-277N platelets. Altogether, these results show that α-Th binding to platelet GPIbα concurrently involves exosite I and II, and suggest that the deranged exosite I of γ-Th can contribute to the interaction but is not fully functional, as shown by the greater effect of the mutation Y279F on the binding with γ-Th than α-Th. Functionally, h-279F and h-277N platelets showed a significantly decreased response to stimulation by α-Th and decreased aggregation as compared to h-WT platelets, indicating that GPIbα contributes to this prothrombotic function of α-Th. In contrast, h-WT but not h-279F or h-277N platelets inhibited fibrinogen clotting, likely a consequence of GPIbα competing with fibrinogen for binding to α-Th exosite I, indicating that α-Th binding to GPIbα can also have anticoagulant consequences. Thus, we have shown that GPIbα is a relevant modulator of α-Th activity with potentially opposite effects on thrombogenesis possibly depending on the type of vascular lesion involved. Effects on inflammation remain to be explored. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 35 ( 2018-08-28)
    Abstract: New mechanisms behind blood cell formation continue to be uncovered, with therapeutic approaches for hematological diseases being of great interest. Here we report an enzyme in protein synthesis, known for cell-based activities beyond translation, is a factor inducing megakaryocyte-biased hematopoiesis, most likely under stress conditions. We show an activated form of tyrosyl-tRNA synthetase (YRS ACT ), prepared either by rationally designed mutagenesis or alternative splicing, induces expansion of a previously unrecognized high-ploidy Sca-1 + megakaryocyte population capable of accelerating platelet replenishment after depletion. Moreover, YRS ACT targets monocytic cells to induce secretion of transacting cytokines that enhance megakaryocyte expansion stimulating the Toll-like receptor/MyD88 pathway. Platelet replenishment by YRS ACT is independent of thrombopoietin (TPO), as evidenced by expansion of the megakaryocytes from induced pluripotent stem cell-derived hematopoietic stem cells from a patient deficient in TPO signaling. We suggest megakaryocyte-biased hematopoiesis induced by YRS ACT offers new approaches for treating thrombocytopenia, boosting yields from cell-culture production of platelet concentrates for transfusion, and bridging therapy for hematopoietic stem cell transplantation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 48 ( 2022-11-29)
    Abstract: Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRS ACT ) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRS ACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRS ACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRS ACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP + ) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these “inflammatory” MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRS ACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2014
    In:  Arteriosclerosis, Thrombosis, and Vascular Biology Vol. 34, No. suppl_1 ( 2014-05)
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 34, No. suppl_1 ( 2014-05)
    Abstract: The pathogenesis of atherosclerosis involves the interplay of blood, stromal and endothelial cells; platelet interactions with vascular endothelium and leukocytes promote atherosclerosis. Glycoprotein (GP) Iba is the ligand-binding subunit of the platelet GPIb-IX-V adhesion receptor complex; its deficiency causes the Bernard-Soulier syndrome (BSS), characterized by absent platelet GPIb-IX-V, macrothrombocytopenia and bleeding. We found that Ldlr-/- mice reconstituted with GPIb a -/- as compared to wild type control developed delayed atherosclerosis associated with reduced platelet binding to blood myeloid cells and reduced accumulation of CD11b + and CD11c + myeloid cells in the aortas. Live imaging in whole blood-perfused microfluidic chambers revealed reduced platelet-monocyte aggregates in GPIb a -/- mice, which also showed decreased TNF in blood monocytes along with decreased TNF and IL12p35, but enhanced arginase1 in aortas. In contrast, Ldlr-/- mice reconstituted with chimeric IL-4R/ GPIb a-Tg bone marrow produce platelets expressing GPIb-IX-V without the GPIba extracytoplasmic domain but less abnormal with respect to size and count and showed atherosclerotic lesion sizes similar to control mice. In conclusion, reduced platelet interactions with myeloid cells and delayed onset of atherosclerosis are not caused by defective GPIba-ligand binding but may result from the low platelet count and, possibly, other functional defects of BSS platelets.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2014
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 114-114
    Abstract: Generation of α-thrombin (FIIa) in response to vascular injury is a key mechanism influencing thrombus formation. Platelet activation by FIIa is mediated by different protease activated receptors (PARs), although the most abundant FIIa binding site on platelets, but not a substrate for proteolysis, is glycoprotein (GP) Ibα in the GPIb-IX-V complex. The functional role of GPIbα in mediating/regulation thrombin functions relative to that of different PARs remains unclear. The goal of these studies was to define how binding to GPIbα can modulate FIIa functions. In mouse platelets we replaced endogenous GPIbα with either its human wild type counterpart (huGPIbα-WT) or with huGPIbα mutated at key residues involved in thrombin binding (D277N, Y276-8-9/F). Because these two mutations resulted in an undistinguishable phenotype, they are designated collectively as huGPIbα-Mut hereon. Mice expressing huGPIbα, WT or Mut, were evaluated in intravital models of arterial thrombosis induced by a ferric chloride-induced carotid artery lesion and venous thromboembolism induced by intravenous α-thrombin injection. Moreover, the blood of huGPIbα WT or Mut mice was also tested in an ex vivo model of thrombus formation upon perfusion over a thrombogenic surface under controlled flow conditions and platelets were evaluated for their responses to FIIa-induced activation. Mice expressing huGPIbα - WT or Mut - have comparable platelet counts and GPIbα surface density. Moreover, huGPIbα-WT platelets bind FIIa similarly than their normal human control counterpart, while huGPIbα-Mut platelets have essentially no detectable FIIa binding. Upon FIIa stimulation, which on mouse platelets is mediated by PAR4, aggregation and Ca2+ transients were significantly enhanced in huGPIbα-Mut as compared to huGPIbα-WT. In contrast, blocking FIIa binding to GPIbα on human platelets essentially abolished FIIa mediated activation, which in human occurs predominantly through PAR1. These results are compatible with the conclusion that, in mice, GPIbα is a competitive inhibitor of FIIa for PAR4-mediated functions. In the presence of metabolically inactive (PGE1 treated) huGPIbα-Mut washed platelets, the clotting time of a purified fibrinogen solution was significantly shorter when triggered by relative high concentration of FIIa (4 nM), but pronouncedly prolonged at a lower FIIa concentration (0.5 nM). Clot visualization showed a much more structured fibrin mesh in the presence of huGPIbα-WT platelets, which was lost with in the presence of huGPIbα-Mut platelets. Mutant mice tested in a model of carotid artery injury exhibited a pronounced prothrombotic phenotype, with a shorter time to occlusion. However they were protected from death induced by I.V. injection of α-thrombin. In ex vivo perfusion studies, the total volume of platelet aggregates formed in huGPIbα-Mut mouse blood exposed to acid-insoluble fibrillar collagen type I was slightly bigger than in huGPIbα-WT mice, but the number of thrombi was increased and their individual size smaller. These huGPIbα-Mut platelets exhibited clear signs of increased activation, as visualized by scanning electron microscopy (SEM). Strikingly, fibrin was almost totally absent in the huGPIbα-Mut thrombi. This was in striking contrast with what observed in huGPIbα-WT mice, in which the surface of platelet thrombi with directly and tightly connected with thick fibrin fibers as visualized by scanning electron microscopy. Possibly because of the reduced platelet membrane-fibrin fibril connection in huGPIbα-Mut platelets, these mice were significantly less susceptible to death when injected with an α-thrombin dose that caused 80% mortality plus in huGPIbα-WT mice. Thus, mice whose platelets have defective α-thrombin binding to GPIbα have a prothrombotic phenotype in high shear stress flow arteries and are protected from thromboembolic death in the low shear stress venous circulation. Our findings identify GPIbα as a relevant FIIa activity modulator in hemostasis and thrombosis through distinct and opposite mechanisms affecting platelet activation (The Yin) and fibrin formation (The Yang). Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 119, No. 9 ( 2012-03-01), p. 2149-2158
    Abstract: Vascular development and angiogenesis initially depend on endothelial tip cell invasion, which is followed by a series of maturation steps, including lumen formation and recruitment of perivascular cells. Notch ligands expressed on the endothelium and their cognate receptors expressed on perivascular cells are involved in blood vessel maturation, though little is known regarding the Notchdependent effectors that facilitate perivascular coverage of nascent vessels. Here, we report that vascular smooth muscle cell (VSMC) recognition of the Notch ligand Jagged1 on endothelial cells leads to expression of integrin αvβ3 on VSMCs. Once expressed, integrin αvβ3 facilitates VSMC adhesion to VWF in the endothelial basement membrane of developing retinal arteries, leading to vessel maturation. Genetic or pharmacologic disruption of Jagged1, Notch, αvβ3, or VWF suppresses VSMC coverage of nascent vessels and arterial maturation during vascular development. Therefore, we define a Notch-mediated interaction between the developing endothelium and VSMCs leading to adhesion of VSMCs to the endothelial basement membrane and arterial maturation.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Cardiovascular Research, Springer Science and Business Media LLC, Vol. 2, No. 4 ( 2023-03-23), p. 368-382
    Abstract: The activation of platelets and coagulation at vascular injury sites is crucial for hemostasis but can promote thrombosis and inflammation in vascular pathologies. Here, we delineate an unexpected spatio-temporal control mechanism of thrombin activity that is platelet orchestrated and locally limits excessive fibrin formation after initial hemostatic platelet deposition. During platelet activation, the abundant platelet glycoprotein (GP)V is cleaved by thrombin. We demonstrate, with genetic and pharmacological approaches, that thrombin-mediated shedding of GPV does not primarily regulate platelet activation in thrombus formation but rather has a distinct function after platelet deposition and specifically limits thrombin-dependent generation of fibrin, a crucial mediator of vascular thrombo-inflammation. Genetic or pharmacologic defects in hemostatic platelet function are unexpectedly attenuated by specific blockade of GPV shedding, indicating that the spatio-temporal control of thrombin-dependent fibrin generation also represents a potential therapeutic target to improve hemostasis.
    Type of Medium: Online Resource
    ISSN: 2731-0590
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 3076837-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Georg Thieme Verlag KG ; 2010
    In:  Thrombosis and Haemostasis Vol. 104, No. 11 ( 2010), p. 894-902
    In: Thrombosis and Haemostasis, Georg Thieme Verlag KG, Vol. 104, No. 11 ( 2010), p. 894-902
    Abstract: The main question concerning the mechanism of α-thrombin binding to platelet membrane glycoprotein (GP)Ib is whether it involves both thrombin exosite I and exosite II. The solution of two independent crystal structures suggests alternative explanations that may actually reflect different modes of binding with distinct pathophysiological significance. With respect to function, it is still unclear whether thrombin binding to GPIb promotes procoagulant and prothrombotic pathways of re-sponse to vascular injury or limits such responses by sequestering, at least temporarily, the active enzyme. We review here published information on these topics and touch upon ongoing studies aimed at finding definitive answers to outstanding questions relevant for a better understanding of thrombosis and haemostasis.
    Type of Medium: Online Resource
    ISSN: 0340-6245 , 2567-689X
    Language: English
    Publisher: Georg Thieme Verlag KG
    Publication Date: 2010
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...