GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-08-17)
    Abstract: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis -regulatory elements as contributing mechanisms to ICP susceptibility.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Oncogene, Springer Science and Business Media LLC, Vol. 40, No. 16 ( 2021-04-22), p. 2858-2871
    Abstract: Cancer stem cells (CSC) play a pivotal role in cancer metastasis and resistance to therapy. Previously, we compared the phosphoproteomes of breast cancer stem cells (BCSCs) enriched subpopulation and non-BCSCs sorted from breast cancer patient-derived xenograft (PDX), and identified a function unknown protein, transmembrane and coiled-coil domain family 3 (TMCC3) to be a potential enrichment marker for BCSCs. We demonstrated greater expression of TMCC3 in BCSCs than non-BCSCs and higher expression of TMCC3 in metastatic lymph nodes and lungs than in primary tumor of breast cancer PDXs. TMCC3 silencing suppressed mammosphere formation, ALDH activity and cell migration in vitro, along with reduced tumorigenicity and metastasis in vivo. Mechanistically, we found that AKT activation was reduced by TMCC3 silencing, but enhanced by TMCC3 overexpression. We further demonstrated that TMCC3 interacted directly with AKT through its 1-153 a.a. domain by cell-free biochemical assay in vitro and co-immunoprecipitation and interaction domain mapping assays in vivo. Based on domain truncation studies, we showed that the AKT-interacting domain of TMCC3 was essential for TMCC3-induced AKT activation, self-renewal, and metastasis. Clinically, TMCC3 mRNA expression in 202 breast cancer specimens as determined by qRT-PCR assay showed that higher TMCC3 expression correlated with poorer clinical outcome of breast cancer, including early-stage breast cancer. Multivariable analysis identified TMCC3 expression as an independent risk factor for survival. These findings suggest that TMCC3 is crucial for maintenance of BCSCs features through AKT regulation, and TMCC3 expression has independent prognostic significance in breast cancer. Thus, TMCC3 may serve as a new target for therapy directed against CSCs.
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2008404-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Cancer, Wiley, Vol. 146, No. 6 ( 2020-03-15), p. 1674-1685
    Abstract: What's new? G protein‐coupled estrogen receptor‐1 (GPER) mediates estrogen‐induced proliferation of normal and malignant breast epithelial cells. However, the role of GPER in breast cancer stem cells (BCSC) biology remains unclear. Here, using patient‐derived xenografts of ER–/PR+ breast cancer, the authors found higher expression of GPER in BCSCs than non‐BCSCs. Moreover, the results indicated that stemness features were sustained via GPER‐mediated PKA/BAD phosphorylation. Stimulation by the GPER ligand tamoxifen enhanced BCSC cell viability and population and BAD phosphorylation. The findings revealed a vital role of GPER‐mediated signaling pathways in BCSC survival, suggesting GPER as a potential therapeutic target for eradicating BCSCs.
    Type of Medium: Online Resource
    ISSN: 0020-7136 , 1097-0215
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 218257-9
    detail.hit.zdb_id: 1474822-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: G3 Genes|Genomes|Genetics, Oxford University Press (OUP), Vol. 7, No. 8 ( 2017-08-01), p. 2439-2460
    Abstract: The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger ( & gt;18.7 Mb) in D. ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains.
    Type of Medium: Online Resource
    ISSN: 2160-1836
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2629978-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Cell Communication and Signaling Vol. 21, No. 1 ( 2023-04-20)
    In: Cell Communication and Signaling, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2023-04-20)
    Abstract: Both IGF-1R/PI3K/AKT/mTOR and Hippo pathways are crucial for breast cancer stem cells (BCSCs). However, their interplay remains unclear. Methods Four triple negative breast cancer cell lines derived from CSC of two patient-derived xenografts (PDXs), AS-B145, AS-B145-1R, AS-B244, and AS-B244-1R, were used to elucidate the role of YAP in BCSCs. YAP silenced BCSCs were analyzed by cell proliferation, aldehyde dehydrogenase (ALDH) activity, mammosphere formation, and tumorigenesis. The effects of modulating IGF-1R and IGF-1 on YAP expression and localization were evaluated. The clinical correlation of YAP and IGF-1R signaling with the overall survival (OS) of 7830 breast cancer patients was analyzed by KM plotter. Results Knockdown of YAP abates the viability and stemness of BCSCs in vitro and tumorigenicity in vivo. Depletion of IGF-1R by shRNA or specific inhibitor decreases YAP expression. In contrast, IGF-1 addition upregulates YAP and enhances its nuclear localization. YAP overexpression increased the mRNA level of IGF-1, but not IGF-1R. Data mining of clinical breast cancer specimens revealed that basal-like breast cancer patients with higher level of IGF-1 and YAP exhibit significantly shorter OS. Conclusions YAP contributes to stemness features of breast cancer in vitro and in vivo. The expression and localization of YAP was regulated by IGF-1R and YAP expression in turns upregulates IGF-1, but not IGF-1R. Clinically, higher level of YAP and IGF-1 significantly correlated with shorter OS in basal-like breast cancer. Taken together, these findings suggest the clinical relevance of interplay between YAP and IGF-1/IGF-1R pathway in sustaining the properties of BCSCs.
    Type of Medium: Online Resource
    ISSN: 1478-811X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2126315-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 9, No. 11 ( 2010-11-01), p. 2869-2878
    Abstract: Several caged Garcinia xanthone natural products have potent bioactivity and a documented value in traditional Eastern medicine. Previous synthesis and structure activity relationship studies of these natural products resulted in the identification of the pharmacophore represented by the structure of cluvenone. In the current study, we examined the anticancer activity of cluvenone and conducted gene expression profiling and pathway analyses. Cluvenone was found to induce apoptosis in T-cell acute lymphoblastic leukemia cells (EC50 = 0.25 μmol/L) and had potent growth-inhibitory activity against the NCI60 cell panel, including those that are multidrug-resistant, with a GI50 range of 0.1 to 2.7 μmol/L. Importantly, cluvenone was approximately 5-fold more potent against a primary B-cell acute lymphoblastic leukemia compared with peripheral blood mononuclear cells from normal donors, suggesting that it has significant tumor selectivity. Comparison of cluvenone's growth-inhibitory profile to those in the National Cancer Institute database revealed that compounds with a similar profile to cluvenone were mechanistically unlike known agents, but were associated with cell stress and survival signaling. Gene expression profiling studies determined that cluvenone induced the activation of mitogen-activated protein kinase and NrF2 stress response pathways. Furthermore, cluvenone was found to induce intracellular reactive oxygen species formation. Lastly, the modulation in the expression of several genes associated with T cell and natural killer cell activation and function by cluvenone suggests a role as an immune-modulator. The current work highlights the potential of cluvenone as a chemotherapeutic agent and provides support for further investigation of these intriguing molecules with regard to mechanism and targets. Mol Cancer Ther; 9(11); 2869–78. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biomaterials, Elsevier BV, Vol. 94 ( 2016-07), p. 31-44
    Type of Medium: Online Resource
    ISSN: 0142-9612
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2004010-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-4-4)
    Abstract: Oral cavity squamous cell carcinoma (OSCC) is an aggressive malignant tumor with high recurrence and poor prognosis in the advanced stage. Patient-derived xenografts (PDXs) serve as powerful preclinical platforms for drug testing and precision medicine for cancer therapy. We assess which molecular signatures affect tumor engraftment ability and tumor growth rate in OSCC PDXs. Methods Treatment-naïve OSCC primary tumors were collected for PDX models establishment. Comprehensive genomic analysis, including whole-exome sequencing and RNA-seq, was performed on case-matched tumors and PDXs. Regulatory genes/pathways were analyzed to clarify which molecular signatures affect tumor engraftment ability and the tumor growth rate in OSCC PDXs. Results Perineural invasion was found as an important pathological feature related to engraftment ability. Tumor microenvironment with enriched hypoxia, PI3K-Akt, and epithelial–mesenchymal transition pathways and decreased inflammatory responses had high engraftment ability and tumor growth rates in OSCC PDXs. High matrix metalloproteinase-1 (MMP1) expression was found that have a great graft advantage in xenografts and is associated with pooled disease-free survival in cancer patients. Conclusion This study provides a panel with detailed genomic characteristics of OSCC PDXs, enabling preclinical studies on personalized therapy options for oral cancer. MMP1 could serve as a biomarker for predicting successful xenografts in OSCC patients.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 281, No. 34 ( 2006-08), p. 24111-24123
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2006
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 4313-4313
    Abstract: T-cell acute lymphoblastic leukemia (T-ALL) is a very common malignancy diagnosed in children, accounting for 15% of all pediatric ALL cases. In pediatric T-ALL, 50% of patients harbor a Notch1 activating mutation1. Patients with relapsed T-ALL have a poor prognosis and thus it is important to understand the molecular mechanisms. Leukemia stem cells (LSC) play a key role in cancer propagation and have the capacity to self-renew and differentiate. LSC have been reported in T-ALL where, following in vitro culture, CD34+/CD4—— and CD34+/CD7——subfractions of T-ALL marrow were enriched for LSC capable of engrafting leukemia in NOD/SCID mice2. However, difficulties in maintaining primary cultures of leukemia cells have hampered investigations into the biology of T-ALL underscoring the need for a direct xenotransplant model for screening candidate drugs that inhibit self-renew pathways. Candidate LSC from T-ALL patient samples (n=10) were sorted using a FACSAria. Notch1, Hes1 and c-myc expression were analyzed in sorted cells by Q-PCR and Notch1 levels were measured by FACS. In addition, key genes were sequenced from some of the samples. To develop a mouse model for human T-ALL, sorted candidate LSC were lentivirally transduced with GFP-Luciferase fusion protein (GLF) and transplanted intrahepatically into neonatal T, B, and NK cell deficient mice3. Leukemic engraftment was monitored by in vivo bioluminescence imaging. The mice were sacrificed 8 weeks after transplant; hematopoietic organs were collected for FACS analysis of human CD2, CD7, CD34 and CD45 engraftment. Finally, to assay LSC self-renewal, engrafted human CD34+ cells from the bone marrow or thymus were transplanted into secondary and tertiary recipients. While Q-PCR and FACS data showed that Notch1 levels varied among different T-ALL patients, Notch 1 expression correlated with level of engraftment. We transplanted 10 T-ALL patient samples with higher Notch1 expression and 9 of 10 samples engrafted immunocompromised mice. Transplanted LSC could be tracked 4 weeks after transplant byin vivo bioluminescent imaging and human CD34+/CD45+, CD2+/CD7+/CD45+ cells were found in hematopoietic organs of engrafted mice at 8 weeks post transplant. Importantly, the engraftment of CD34+/CD45+, CD2+/CD7+/CD45+ cell populations in hematopoietic organs derived from T-ALL patient samples correlates with the status of mutations. Finally, isolated human CD34 progenitor cells could engraft 2nd and 3rd recipients demonstrating their propensity for self-renewal and differentiation. 1. Enhanced Notch1 expression was found in T-ALL CD34+ cells. 2. Candidate T-ALL LSC (CD34+/CD4−/CD7−) give rise to CD34+/CD45+ and CD2+/CD7+/CD45+ cells in the hematopoietic organs of transplanted mice. 3. T-ALL LSC can be tracked in 1st and 2nd transplanted mice providing a robust in vivo model for testing novel self-renew pathway inhibitors. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 4313.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...