GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Veterinary Science Vol. 8 ( 2022-1-13)
    In: Frontiers in Veterinary Science, Frontiers Media SA, Vol. 8 ( 2022-1-13)
    Abstract: Transmissible gastroenteritis virus (TGEV) is a porcine pathogen causing highly communicable gastrointestinal infection that are lethal for suckling piglets. In an attempt to delineate the pathogenic mechanism of TGEV-infected porcine testicular cells (ST cells), we conducted a whole genome analysis of DNA methylation and expression in ST cells through reduced bisulfate-seq and RNA-seq. We examined alterations in the methylation patterns and recognized 1764 distinct methylation sites. 385 differentially expressed genes (DEGs) were enriched in the viral defense and ribosome biogenesis pathways. Integrative analysis identified two crucial genes ( EMILIN2, RIPOR3 ), these two genes expression were negatively correlated to promoter methylation. In conclusion, alterations in DNA methylation and differential expression of genes reveal that their potential functional interactions in TGEV infection. Our data highlights the epigenetic and transcriptomic landscapes in TGEV-infected ST cells and provides a reliable dataset for screening TGEV resistance genes and genetic markers.
    Type of Medium: Online Resource
    ISSN: 2297-1769
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2834243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Lancet Neurology, Elsevier BV, Vol. 22, No. 6 ( 2023-06), p. 485-493
    Type of Medium: Online Resource
    ISSN: 1474-4422
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2081241-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Veterinary Science Vol. 7 ( 2020-2-18)
    In: Frontiers in Veterinary Science, Frontiers Media SA, Vol. 7 ( 2020-2-18)
    Type of Medium: Online Resource
    ISSN: 2297-1769
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2834243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2024
    In:  International Journal of Biological Macromolecules Vol. 276 ( 2024-09), p. 133959-
    In: International Journal of Biological Macromolecules, Elsevier BV, Vol. 276 ( 2024-09), p. 133959-
    Type of Medium: Online Resource
    ISSN: 0141-8130
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 282732-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 23 ( 2022-11-25), p. 14713-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 23 ( 2022-11-25), p. 14713-
    Abstract: Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. Fucosyltransferase 8 (FUT8) is a glycosyltransferase that catalyzes core fucosylation; however, its role in mediating the resistance to E. coli F18 infection in pigs remains unknown. In this study, we systematically verified the relationship between FUT8 expression and E. coli resistance. The results showed that FUT8 was expressed in all detected tissues of Meishan piglets and that its expression was significantly increased in the duodenum and jejunum of E. coli F18-sensitive individuals when compared to E. coli F18-resistant individuals. FUT8 expression increased after exposure to E. coli F18 (p 〈 0.05) and decreased significantly after LPS induction for 6 h (p 〈 0.01). Then, the IPEC-J2 stable cell line with FUT8 interference was constructed, and FUT8 knockdown decreased the adhesion of E. coli F18ac to IPEC-J2 cells (p 〈 0.05). Moreover, we performed a comparative transcriptome study of IPEC-J2 cells after FUT8 knockdown via RNA-seq. In addition, further expression verification demonstrated the significant effect of FUT8 on the glycosphingolipid biosynthesis and Toll-like signaling pathways. Moreover, the core promoter of FUT8, which was located at −1213 bp to −673 bp, was identified via luciferase assay. Interestingly, we found a 1 bp C base insertion mutation at the −774 bp region, which could clearly inhibit the transcriptional binding activity of C/EBPα to an FUT8 promoter. Therefore, it is speculated that FUT8 acts in a critical role in the process of E. coli infection; furthermore, the low expression of FUT8 is conducive to the enhancement of E. coli resistance in piglets. Our findings revealed the mechanism of pig FUT8 in regulating E. coli resistance, which provided a theoretical basis for the screening of E. coli resistance in Chinese local pig breeds.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 25, No. 1 ( 2024-04-30)
    Abstract: Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. Results We found 30 million non-redundant single nucleotide variants and small indels ( 〈  50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis -regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes ( GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15 ) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. Conclusion We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Biology Direct Vol. 11, No. 1 ( 2016-12)
    In: Biology Direct, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2016-12)
    Type of Medium: Online Resource
    ISSN: 1745-6150
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2221028-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 11 ( 2022-05-31), p. 6191-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 11 ( 2022-05-31), p. 6191-
    Abstract: Porcine epidemic diarrhea virus (PEDV) is a burdensome coronavirus for the global pig industry. Although its fecal-oral route has been well-recognized, increasing evidence suggests that PEDV can also spread through airborne routes, indicating that the infection may also occur in the respiratory tract. N6-methyladenosine (m6A) has been known to regulate viral replication and host immunity, yet its regulatory role and molecular mechanism regarding PEDV infection outside the gastrointestinal tract remain unexplored. In this study, we demonstrate that PEDV can infect porcine lung tissue and the 3D4/21 alveolar macrophage cell line, and the key m6A demethylase ALKBH5 is remarkably induced after PEDV infection. Interestingly, the disruption of ALKBH5 expression remarkably increases the infection’s capacity for PEDV. Transcriptome profiling identified dozens of putative targets of ALKBH5, including GAS6, which is known to regulate virus infectivity. Further, MeRIP-qPCR and mRNA stability analyses suggest that ALKBH5 regulates the expression of GAS6 via an m6A-YTHDF2-dependent mechanism. Overall, our study demonstrates that PEDV can infect porcine lung tissue and 3D4/21 cells and reveals the crucial role of ALKBH5 in restraining PEDV infections, at least partly, by influencing GAS6 through an m6A-YTHDF2-dependent mechanism.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cells, MDPI AG, Vol. 10, No. 11 ( 2021-10-20), p. 2818-
    Abstract: Deoxynivalenol (DON) is a common environmental toxin that is secreted by fusarium fungi that frequently contaminates feedstuff and food. While the detrimental effects of DON on human and animal reproductive systems have been well recognized, the underlying mechanism remains poorly understood. Ovarian granulosa cells (GCs), which surround oocytes, are crucial for regulating oocyte development, mainly through the secretion of hormones such as estrogen and progesterone. Using an in vitro model of murine GCs, we characterized the cytotoxic effects of DON and profiled genome-wide chromatin accessibility and transcriptomic alterations after DON exposure. Our results suggest that DON can induce decreased viability and growth, increased apoptosis rate, and disrupted hormone secretion. In total, 2533 differentially accessible loci and 2675 differentially expressed genes were identified that were associated with Hippo, Wnt, steroid biosynthesis, sulfur metabolism, and inflammation-related pathways. DON-induced genes usually have a concurrently increased occupancy of active histone modifications H3K4me3 and H3K27ac in their promoters. Integrative analyses identified 35 putative directly affected genes including Adrb2 and Fshr, which are key regulators of follicular growth, and revealed that regions with increased chromatin accessibility are enriched with the binding motifs for NR5A1 and NR5A2, which are important for GCs. Moreover, DON-induced inflammatory response is due to the activation of the NF-κB and MAPK signaling pathways. Overall, our results provide novel insights into the regulatory elements, genes, and key pathways underlying the response of ovarian GCs to DON cytotoxicity.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Genes, MDPI AG, Vol. 12, No. 10 ( 2021-10-09), p. 1586-
    Abstract: Post-weaning diarrhea (PWD) is frequently associated with E. coli F18 infections in piglets. However, the underlying molecular mechanism concerning the resistance of E. coli F18 in local weaned piglets in China is not clearly understood. In the present study, by a comparative analysis of the transcriptome, a-1,3-fucosyltransferase (FUT3) was evaluated as a key candidate correlated with resistance to E. coli F18 in Sutai and Meishan piglets. Functional analysis demonstrated that FUT3 acts as a key positive regulator of E. coli F18 susceptibility in newly food accustomed piglets. However, the core promoter of FUT3 was present at −500–(−206) bp (chr.2: g.73171117–g.73171616), comprising of 9 methylated CpG sites. Among these, the methylation levels of the two CpG sites (mC-3, mC-5) located in HIF1A and Sp1 transcription factor (TF) considerably associated with mRNA expression of FUT3 (p 〈 0.05). Our findings indicated that the methylation of mC-3 and mC-5 sites has certain inhibitory effect on FUT3 expression and promotes the resistance of E. coli F18 in piglets. The underlined study may explore FUT3 as a new candidate target in E. coli F18 infection in Chinese local weaned piglets.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...