GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), Vol. 35, No. 12 ( 2020-12)
    Abstract: Paired δ 13 C‐δ 18 O data are used to identify water mass end‐members outside the sampled range In past oceans, a ternary mixing model using δ 13 C‐δ 18 O may outperform a binary δ 13 C mixing model AMOC was relatively deep during the M2 glacial compared to the late Pliocene interglacials
    Type of Medium: Online Resource
    ISSN: 2572-4517 , 2572-4525
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2916554-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Climate of the Past, Copernicus GmbH, Vol. 18, No. 4 ( 2022-05-02), p. 961-973
    Abstract: Abstract. It has been hypothesized that global temperature trends are tightly linked to tropical thermocline depth, and that thermocline shoaling played a crucial role in the intensification of late Pliocene Northern Hemisphere glaciation. The Pliocene thermocline evolution in the Pacific Ocean is well documented and supports this hypothesis, but thermocline records from the tropical Atlantic Ocean are limited. We present new planktonic foraminiferal Mg/Ca, δ18O, and δ13C records from the late Pliocene interval at Ocean Drilling Program Site 959 in the Eastern Equatorial Atlantic (EEA), which we use to reconstruct ocean temperatures and relative changes in salinity and thermocline depth. Data were generated using surface-dwelling Globigerinoides ruber and subsurface-dwelling Neogloboquadrina dutertrei. Reduced gradients between the surface and subsurface records indicate deepening of the EEA thermocline at the end of the mid-Piacenzian Warm Period (mPWP; ∼ 3.3–3.0 Ma). We connect our late Pliocene records to previously published early Pliocene δ18O data from Site 959 and compare these to the Site 1000 in the Caribbean Sea. Over the course of the Pliocene, thermocline changes in the EEA and Caribbean Sea follow similar patterns, with prominent step-wise thermocline deepening between ∼ 5.5 and 4.0 Ma and gradual shoaling up to the mPWP, followed by minor deepening at the end of the mPWP. The tropical thermocline depth evolution of the tropical Atlantic differs from the Pacific, which is characterized by gradual basin-wide shoaling across the Pliocene. These results potentially challenge the hypothesized link between tropical thermocline depth and global climate. The mechanisms behind the periodically divergent Pacific and Atlantic thermocline movements remain speculative. We suggest that they are related to basin geometry and heterogenous temperature evolutions in regions from where thermocline waters are sourced. A positive feedback loop between source region temperature and tropical cyclone activity may have amplified tropical thermocline adjustments.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...