GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Immunology, Springer Science and Business Media LLC, Vol. 23, No. 10 ( 2022-10), p. 1495-1506
    Type of Medium: Online Resource
    ISSN: 1529-2908 , 1529-2916
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2026412-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceuticals, MDPI AG, Vol. 14, No. 4 ( 2021-03-28), p. 300-
    Abstract: [99mTc]Tc-HYNIC-TOC is the most widely used 99mTc-labeled somatostatin receptor (SST) agonist for the SPECT imaging of SST-expressing tumors, such as neuroendocrine tumors. Recently, radiolabeled SST antagonists have shown improved diagnostic efficacy over agonists. 99mTc-labeled SST antagonists are lacking in clinical practice. Surprisingly, when [99mTc] Tc-HYNIC was conjugated to the SST2 antagonist SS01, SST2 imaging was not feasible. This was not the case when [99mTc]Tc-N4 was conjugated to SS01. Here, we assessed the introduction of different spacers (X: β-Ala, Ahx, Aun and PEG4) among HYNIC and SS01 with the aim of restoring the affinity of HYNIC conjugates. In addition, we used the alternative antagonist JR11 for determining the suitability of HYNIC with 99mTc-labeled SST2 antagonists. We performed a head-to-head comparison of the N4 conjugates of SS01 and JR11. [99mTc] Tc-HYNIC-TOC was used as a reference, and HEK-SST2 cells were used for in vitro and in vivo evaluation. EDDA was used as a co-ligand for all [99mTc]Tc-HYNIC conjugates. The introduction of Ahx restored, to a great extent, the SST2-mediated cellular uptake of the [99mTc] Tc-HYNIC-X conjugates (X: spacer), albeit lower than the corresponding [99mTc]Tc-N4-conjugates. SPECT/CT images showed that all 99mTc-labeled conjugates accumulated in the tumor and kidneys with [99mTc] Tc-HYNIC-PEG4-SS01, [99mTc]Tc-N4-SS01 and [99mTc] Tc-N4-JR11 having notably higher kidney uptake. Biodistribution studies showed similar or better tumor-to-non-tumor ratios for the [99mTc]Tc-HYNIC-Ahx conjugates, compared to the [99mTc] Tc-N4 counterparts. The [99mTc]Tc-HYNIC-Ahx conjugates of SS01 and JR11 were comparable to [99mTc] Tc-HYNIC-TOC as imaging agents. HYNIC is a suitable chelator for the development of 99mTc-labeled SST2 antagonists when a spacer of appropriate length, such as Ahx, is used.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Cancers Vol. 15, No. 1 ( 2022-12-20), p. 17-
    In: Cancers, MDPI AG, Vol. 15, No. 1 ( 2022-12-20), p. 17-
    Abstract: Radioligand therapy (RLT) represents an effective strategy to treat malignancy by cancer-selective delivery of radioactivity following systemic application. Despite recent therapeutic successes, cancer radioresistance and insufficient delivery of the radioactive ligands, as well as cytotoxicity to healthy organs, significantly impairs clinical efficacy. To improve disease management while minimizing toxicity, in recent years, the combination of RLT with molecular targeted therapies against cancer signaling networks showed encouraging outcomes. Characterization of the key deregulated oncogenic signaling pathways revealed their convergence to activate the mammalian target of rapamycin (mTOR), in which signaling plays an essential role in the regulation of cancer growth and survival. Therapeutic interference with hyperactivated mTOR pathways was extensively studied and led to the development of mTOR inhibitors for clinical applications. In this review, we outline the regulation and oncogenic role of mTOR signaling, as well as recapitulate and discuss mTOR complex 1 (mTORC1) inhibition to improve the efficacy of RLT in cancer.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 3610-3610
    Abstract: The immune system can eliminate tumors, but checkpoints enable tumors to escape immune destruction. Here, we report the systematic identification of immune evasion mechanisms using genome-scale in vivo CRISPR screens in eight murine cancer models treated with immune checkpoint blockade (ICB). We identify and validate previously unreported immune evasion genes and identify key immune inhibitory checkpoints that have a conserved role across several cancer models, such as the non-classical MHC-I molecule Qa-1b/HLA-E, which scores as the top overall sensitizing hit across all screens. Surprisingly, we find that loss of IFNγ signaling by tumor cells sensitizes 6 of 8 cancer models to ICB. While IFN-mediated inflammation has been associated with response to ICB, there have also been reports of ICB-resistance driven by IFN sensing. However, several divergent mechanisms have been proposed to explain the inhibitory effect of tumor IFN sensing, leading to uncertainty about how this key immune signaling pathway is regulating anti-tumor immunity in different contexts. Using in vivo screening data, transcriptional profiling, and genetic interaction studies, we reveal that the immune-inhibitory effects of tumor IFN sensing are the direct result of tumor upregulation of classical and non-classical MHC-I genes. The interferon-MHC-I axis can inhibit anti-tumor immunity through two mechanisms: first, upregulation of classical MHC-I inhibits the cytotoxicity of natural killer cells, which are activated by ICB. Second, IFN-mediated upregulation of Qa-1b directly inhibits cytotoxicity by effector CD8+ T cells via the NKG2A/CD94 receptor, which is induced on CD8+ T cells by ICB. Finally, we show that high interferon-stimulated gene expression in patients is associated with decreased survival in RCC and poor response to ICB in melanoma. Our study establishes a unifying mechanism to explain the inhibitory role of tumor IFN sensing, revealing that IFN-mediated upregulation of classical and non-classical MHC-I inhibitory checkpoints can facilitate immune escape. Citation Format: Juan Dubrot, Peter P. Du, Sarah Kate Lane-Reticker, Emily A. Kessler, Audrey J. Muscato, Arnav Mehta, Samuel S. Freeman, Peter M. Allen, Kira E. Olander, Kyle M. Ockerman, Clara H. Wolfe, Fabius Wiesmann, Nelson H. Knudsen, Hsiao-Wei Tsao, Arvin Iracheta-Vellve, Emily M. Schneider, Andrea N. Rivera-Rosario, Ian C. Kohnle, Hans W. Pope, Austin Ayer, Gargi Mishra, Margaret D. Zimmer, Sarah Y. Kim, Animesh Mahapatra, Hakimeh Ebrahimi-Nik, Dennie T. Frederick, Genevieve M. Boland, W. Nicholas Haining, David E. Root, John G. Doench, Nir Hacohen, Kathleen B. Yates, Robert T. Manguso. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3610.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...