GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Breast Cancer Research, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2019-12)
    Abstract: Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer. Specifically, the nuclear factor kappa b (NFκB) pathway contributes to cancer progression by stimulating proliferation and preventing apoptosis. One target gene of this pathway is PTGS2 , which encodes for cyclooxygenase 2 (COX-2) and is upregulated in 40% of human breast carcinomas. COX-2 is an enzyme involved in the production of prostaglandins, which mediate inflammation. Here, we investigate the effect of Singleminded-2s (SIM2s), a transcriptional tumor suppressor that is implicated in inhibition of tumor growth and metastasis, in regulating NFκB signaling and COX-2. Methods For in vitro experiments, reporter luciferase assays were utilized in MCF7 cells to investigate promoter activity of NFκB and SIM2. Real-time PCR, immunoblotting, immunohistochemistry, and chromatin immunoprecipitation assays were performed in SUM159 and MCF7 cells. For in vivo experiments, MCF10DCIS.COM cells stably expressing SIM2s-FLAG or shPTGS2 were injected into SCID mice and subsequent tumors harvested for immunostaining and analysis. Results Our results reveal that SIM2 attenuates the activation of NFκB as measured using NFκB-luciferase reporter assay. Furthermore, immunostaining of lysates from breast cancer cells overexpressing SIM2s showed reduction in various NFκB signaling proteins, as well as pAkt, whereas knockdown of SIM2 revealed increases in NFκB signaling proteins and pAkt. Additionally, we show that NFκB signaling can act in a reciprocal manner to decrease expression of SIM2s . Likewise, suppressing NFκB translocation in DCIS.COM cells increased SIM2s expression . We also found that NFκB / p65 represses SIM2 in a dose-dependent manner, and when NFκB is suppressed, the effect on the SIM2 is negated. Additionally, our ChIP analysis confirms that NFκB/p65 binds directly to SIM2 promoter site and that the NFκB sites in the SIM2 promoter are required for NFκB-mediated suppression of SIM2s. Finally, overexpression of SIM2s decreases PTGS2 in vitro, and COX-2 staining in vivo while decreasing PTGS2 and/or COX-2 activity results in re-expression of SIM2. Conclusion Our findings identify a novel role for SIM2s in NFκB signaling and COX-2 expression.
    Type of Medium: Online Resource
    ISSN: 1465-542X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2041618-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Immunology Vol. 10 ( 2019-6-11)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 10 ( 2019-6-11)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Life, MDPI AG, Vol. 11, No. 9 ( 2021-08-27), p. 884-
    Abstract: Since the Nobel Prize-winning work of Huggins, androgen ablation has been a mainstay for treatment of recurrent prostate cancer. While initially effective for most patients, prostate cancers inevitably develop the ability to survive, grow, and metastasize further, despite ongoing androgen suppression. Here, we briefly review key preclinical studies over decades and include illustrative examples from our own laboratories that suggest prostate cancer cells titrate androgen signaling to optimize growth. Such laboratory-based studies argue that adaptations that allow growth in a low-androgen environment render prostate cancer sensitive to restoration of androgens, especially at supraphysiologic doses. Based on preclinical data as well as clinical observations, trials employing high-dose testosterone (HDT) therapy have now been conducted. These trials suggest a clinical benefit in cancer response and quality of life in a subset of castration-resistant prostate cancer patients. Laboratory studies also suggest that HDT may yet be optimized further to improve efficacy or durability of response. However, laboratory observations suggest that the cancer will inevitably adapt to HDT, and, as with prior androgen deprivation, disease progression follows. Nonetheless, the adaptations made to render tumors resistant to hormonal manipulations may reveal vulnerabilities that can be exploited to prolong survival and provide other clinical benefits.
    Type of Medium: Online Resource
    ISSN: 2075-1729
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662250-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 22 ( 2018-11-15), p. 6473-6485
    Abstract: Postpartum mammary gland involution is a tissue remodeling event that occurs in all mammals in the absence of nursing or after weaning to return the gland to the pre-pregnant state. The tissue microenvironment created by involution has proven to be tumor promotional. Here we report that the GPI-linked protein semaphorin 7A (SEMA7A) is expressed on mammary epithelial cells during involution and use preclinical models to demonstrate that tumors induced during involution express high levels of SEMA7A. Overexpression of SEMA7A promoted the presence of myeloid-derived podoplanin (PDPN)-expressing cells in the tumor microenvironment and during involution. SEMA7A drove the expression of PDPN in macrophages, which led to integrin- and PDPN-dependent motility and adherence to lymphatic endothelial cells to promote lymphangiogenesis. In support of this mechanism, mammary tissue from SEMA7A-knockout mice exhibited decreased myeloid-derived PDPN-expressing cells, PDPN-expressing endothelial cells, and lymphatic vessel density. Furthermore, coexpression of SEMA7A, PDPN, and macrophage marker CD68 predicted for decreased distant metastasis-free survival in a cohort of over 600 cases of breast cancer as well as in ovarian, lung, and gastric cancers. Together, our results indicate that SEMA7A may orchestrate macrophage-mediated lymphatic vessel remodeling, which in turn drives metastasis in breast cancer. Signficance: SEMA7A, which is expressed on mammary cells during glandular involution, alters macrophage biology and lymphangiogenesis to drive breast cancer metastasis. Cancer Res; 78(22); 6473–85. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 18_Supplement ( 2022-09-15), p. IA020-IA020
    Abstract: Rhabdomyosarcoma, a pediatric malignancy with partial resemblance to undifferentiated skeletal muscle, is characterized by high expression of myogenic-lineage transcription factors such as MYOD1 and MYOG. Despite high expression of these transcription factors, which in normal muscle result in differentiation, RMS cells fail to differentiate, suggesting the presence of factors that inhibit their normal differentiation-promoting functions. In this talk, I will present data that the key muscle transcriptional regulator, SIX1, which in development activates the myogenic regulatory factors (MRFs) and promotes muscle differentiation, in fact inhibits differentiation in fusion-negative (FN) RMS. SIX1 holds FN-RMS cells in a progenitor-like state by altering the chromatin landscape and causing MYOD1, a key MRF, to preferentially bind to regulatory regions of genes permissive to growth rather than differentiation. Loss of SIX1 results in re-localization of MYOD1 to promoters/enhancers of genes associated with differentiation, and further results in increased binding of MYOG at such loci. Altered binding of MYOD1 and MYOG in response to SIX1 loss results in marked inhibition of RMS growth in vivo, via induction of differentiation. These data suggest that SIX1 acts as a master regulatory factor controlling the fate of RMS cells. Data will be presented that suggest dynamic actions of SIX1 and its co-factors throughout normal muscle differentiation, whereby high levels of SIX1 expressed in early muscle differentiation may mimic a transcriptional state seen in RMS. We hypothesize that the specific levels of SIX1, combined with a unique combination of transcriptional co-factors, reprogram genome-wide binding of MRFs to different promoter/enhancer sites at specific developmental time points, and that RMS is trapped in an early developmental state where SIX1 represses differentiation via genome-wide alterations in MRF binding that favor growth. Understanding the co-factors that work with SIX1 to alter chromatin state and MRF binding may enable the discovery of novel targets whose inhibition could serve as a relatively non-toxic treatment to restore normal developmental processes and inhibit RMS progression. Citation Format: Heide L. Ford, Jessica Y. Hsu, Etienne P. Danis, Stephanie Nance, Jenean H. O’Brien, Annika L. Gustafson, Veronica M. Wessells, Andrew E. Goodspeed, Jared C. Talbot, Sharon L. Amacher, Paul Jedlicka, Joshua C. Black, James C. Costello, Adam D. Durbin, Kristin B. Artinger. Reprogramming of myogenic transcription factors in rhabdomyosarcoma [abstract]. In: Proceedings of the AACR Special Conference: Sarcomas; 2022 May 9-12; Montreal, QC, Canada. Philadelphia (PA): AACR; Clin Cancer Res 2022;28(18_Suppl):Abstract nr IA020.
    Type of Medium: Online Resource
    ISSN: 1557-3265
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cell Reports, Elsevier BV, Vol. 38, No. 5 ( 2022-02), p. 110323-
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Neuro-Oncology, Oxford University Press (OUP), ( 2023-07-24)
    Abstract: Medulloblastoma is the most common pediatric brain malignancy. Patients with the Group 3 subtype of medulloblastoma (MB) often exhibit MYC amplification and/or overexpression and have the poorest prognosis. While Group 3 MB is known to be highly dependent on MYC, direct targeting of MYC remains elusive. Methods Patient gene expression data were used to identify highly expressed EYA2 in Group 3 MB samples, assess the correlation between EYA2 and MYC, and examine patient survival. Genetic and pharmacological studies were performed on EYA2 in Group 3 derived MB cell models to assess MYC regulation and viability in vitro and in vivo. Results EYA2 is more highly expressed in Group 3 MB than other MB subgroups and is essential for Group 3 MB growth in vitro and in vivo. EYA2 regulates MYC expression and protein stability in Group 3 MB, resulting in global alterations of MYC transcription. Inhibition of EYA2 tyrosine phosphatase activity, using a novel small molecule inhibitor (NCGC00249987, or 9987), significantly decreases Group 3 MB MYC expression in both flank and intracranial growth in vivo. Human MB RNA-seq data show that EYA2 and MYC are significantly positively correlated, high EYA2 expression is significantly associated with a MYC transcriptional signature, and patients with high EYA2 and MYC expression have worse prognoses than those that do not express both genes at high levels. Conclusions Our data demonstrate that EYA2 is a critical regulator of MYC in Group 3 MB and suggest a novel therapeutic avenue to target this highly lethal disease.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...