GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Clinical Hypertension, Wiley, Vol. 22, No. 11 ( 2020-11), p. 2152-2155
    Abstract: Animal studies show that high‐salt diet affects T‐cell subpopulations, but evidence in humans is scarce and contradictory. This pilot study investigated the effect of a 2‐week high‐salt diet on T‐cell subpopulations (ie, γδ T cells, Th17 cells, and regulatory T cells) in five healthy males. The mean (SD) age of the participants was 33 (2) years, with normal body mass index, kidney function, and baseline blood pressure. In terms of phenotype, there was an isolated increase of CD69 expression in Vδ1 T cells ( P  = .04), which is an early activation marker. There were no statistically significant changes or trends in any of the other tested markers or in the Th17 or regulatory T‐cell subsets. The increase in CD69 was strongly correlated to increases in 24‐hour urinary sodium excretion ( r  = .93, P  = .02). These results of this pilot may motivate the use of longer dietary salt interventions in future studies on salt and adaptive immune cells.
    Type of Medium: Online Resource
    ISSN: 1524-6175 , 1751-7176
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2058690-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BMJ Open Diabetes Research & Care, BMJ, Vol. 8, No. 1 ( 2020-05), p. e001039-
    Abstract: Patients with type 1 diabetes are susceptible to hypertension, possibly resulting from increased salt sensitivity and accompanied changes in body fluid composition. We examined the effect of a high-salt diet (HSD) in type 1 diabetes on hemodynamics, including blood pressure (BP) and body fluid composition. Research design and methods We studied eight male patients with type 1 diabetes and 12 matched healthy controls with normal BP, body mass index, and renal function. All subjects adhered to a low-salt diet and HSD for eight days in randomized order. On day 8 of each diet, extracellular fluid volume (ECFV) and plasma volume were calculated with the use of iohexol and 125 I-albumin distribution. Hemodynamic measurements included BP, cardiac output (CO), and systemic vascular resistance. Results After HSD, patients with type 1 diabetes showed a BP increase (mean arterial pressure: 85 (5) mm Hg vs 80 (3) mm Hg; p 〈 0.05), while BP in controls did not rise (78 (5) mm Hg vs 78 (5) mm Hg). Plasma volume increased after HSD in patients with type 1 diabetes (p 〈 0.05) and not in controls (p=0.23). There was no significant difference in ECFV between diets, while HSD significantly increased CO, heart rate (HR) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in type 1 diabetes but not in controls. There were no significant differences in systemic vascular resistance, although there was a trend towards an HSD-induced decrease in controls (p=0.09). Conclusions In the present study, patients with type 1 diabetes show a salt-sensitive BP rise to HSD, which is accompanied by significant increases in plasma volume, CO, HR, and NT-proBNP. Underlying mechanisms for these responses need further research in order to unravel the increased susceptibility to hypertension and cardiovascular disease in diabetes. Trial registration numbers NTR4095 and NTR4788.
    Type of Medium: Online Resource
    ISSN: 2052-4897
    Language: English
    Publisher: BMJ
    Publication Date: 2020
    detail.hit.zdb_id: 2732918-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-01-12)
    Abstract: The retinal microcirculation is increasingly receiving credit as a relatively easily accessible microcirculatory bed that correlates closely with clinical cardiovascular outcomes. The effect of high salt (NaCl) intake on the retinal microcirculation is currently unknown. Therefore, we performed an exploratory randomized cross-over dietary intervention study in 18 healthy males. All subjects adhered to a two-week high-salt diet and low-salt diet, in randomized order, after which fundus photographs were taken and assessed using a semi-automated computer-assisted program (SIVA, version 4.0). Outcome parameters involved retinal venular and arteriolar tortuosity, vessel diameter, branching angle and fractal dimension. At baseline, participants had a mean (SD) age of 29.8 (4.4) years and blood pressure of 117 (9)/73 (5) mmHg. Overall, high-salt diet significantly increased venular tortuosity (12.2%, p = 0.001). Other retinal parameters were not significantly different between diets. Changes in arteriolar tortuosity correlated with changes in ambulatory systolic blood pressure (r = − 0.513; p = 0.04). In conclusion, high-salt diet increases retinal venular tortuosity, and salt-induced increases in ambulatory systolic blood pressure associate with decreases in retinal arteriolar tortuosity. Besides potential eye-specific consequences, both phenomena have previously been associated with hypertension and other cardiovascular risk factors, underlining the deleterious microcirculatory effects of high salt intake.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 11, No. 13 ( 2022-07-05)
    Abstract: Experimental studies show that high‐sodium intake affects the innate immune system, among others with increased circulating granulocytes. Whether this relationship exists on a population level and whether this relates to disease outcomes is unclear. We aimed to test the hypotheses that (1) sodium intake is associated with granulocytes on a population level; (2) granulocytes are associated with the presence of hypertension and both cardiovascular and renal outcomes; and (3) the relation between high‐sodium intake and these outcomes is mediated by granulocytes. Methods and Results We performed an analysis in 13 804 participants from the prospective EPIC (European Prospective Investigation into Cancer)‐Norfolk cohort, with a mean age of 58 years and median follow‐up of 19.3 years. Analyses were carried out using calculated estimated sodium intake and sodium‐to‐potassium ratios from spot urines at baseline. The main outcomes were hypertension at baseline, and composite cardiovascular (mortality or cardiovascular events) and renal (mortality or renal events) outcomes during follow‐up. Sodium intake and urine sodium‐to‐potassium ratio were positively associated with circulating granulocyte concentrations after adjustment for confounders (β=0.03; P =0.028 and β=0.06; P 〈 0.001, respectively). Granulocytes significantly mediated the associations of, respectively, sodium intake and urine sodium‐to‐potassium ratio with hypertension at baseline, and cardiovascular and renal outcomes. Conclusions Sodium intake is positively associated with circulating granulocyte concentrations, and higher granulocyte concentrations associate with worse long‐term cardiovascular and renal outcomes. Given the recently established immune‐modulating effects of sodium and the role of immune cells in both cardiovascular and renal disease, causality for this pathway may need consideration in further studies.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Translational Medicine, Springer Science and Business Media LLC, Vol. 19, No. 1 ( 2021-01-20)
    Abstract: By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis. Methods We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses. Results Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed. Conclusion DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis. Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 ( https://www.trialregister.nl/trial/3933 at 2013-07-29) and NTR4788 ( https://www.trialregister.nl/trial/4645 at 2014-09-12).
    Type of Medium: Online Resource
    ISSN: 1479-5876
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2118570-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...