GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  The Cryosphere Vol. 14, No. 11 ( 2020-11-05), p. 3663-3685
    In: The Cryosphere, Copernicus GmbH, Vol. 14, No. 11 ( 2020-11-05), p. 3663-3685
    Abstract: Abstract. Surface mass balances of polar ice sheets are essential to estimate the contribution of ice sheets to sea level rise. Uncertain snow and firn densities lead to significant uncertainties in surface mass balances, especially in the interior regions of the ice sheets, such as the East Antarctic Plateau (EAP). Robust field measurements of surface snow density are sparse and challenging due to local noise. Here, we present a snow density dataset from an overland traverse in austral summer 2016/17 on the Dronning Maud Land plateau. The sampling strategy using 1 m carbon fiber tubes covered various spatial scales, as well as a high-resolution study in a trench at 79∘ S, 30∘ E. The 1 m snow density has been derived volumetrically, and vertical snow profiles have been measured using a core-scale microfocus X-ray computer tomograph. With an error of less than 2 %, our method provides higher precision than other sampling devices of smaller volume. With four spatially independent snow profiles per location, we reduce the local noise and derive a representative 1 m snow density with an error of the mean of less than 1.5 %. Assessing sampling methods used in previous studies, we find the highest horizontal variability in density in the upper 0.3 m and therefore recommend the 1 m snow density as a robust measure of surface snow density in future studies. The average 1 m snow density across the EAP is 355 kg m−3, which we identify as representative surface snow density between Kohnen Station and Dome Fuji. We cannot detect a temporal trend caused by the temperature increase over the last 2 decades. A difference of more than 10 % to the density of 320 kg m−3 suggested by a semiempirical firn model for the same region indicates the necessity for further calibration of surface snow density parameterizations. Our data provide a solid baseline for tuning the surface snow density parameterizations for regions with low accumulation and low temperatures like the EAP.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 9 ( 2021-3-25)
    Abstract: The occurrence of snowpack features has been used in the past to classify environmental regimes on the polar ice sheets. Among these features are thin crusts with high density, which contribute to firn stratigraphy and can have significant impact on firn ventilation as well as on remotely inferred properties like accumulation rate or surface mass balance. The importance of crusts in polar snowpack has been acknowledged, but nonetheless little is known about their large-scale distribution. From snow profiles measured by means of microfocus X-ray computer tomography we created a unique dataset showing the spatial distribution of crusts in snow on the East Antarctic Plateau as well as in northern Greenland including a measure for their local variability. With this method, we are able to find also weak and oblique crusts, to count their frequency of occurrence and to measure the high-resolution density. Crusts are local features with a small spatial extent in the range of tens of meters. From several profiles per sampling site we are able to show a decreasing number of crusts in surface snow along a traverse on the East Antarctic Plateau. Combining samples from Antarctica and Greenland with a wide range of annual accumulation rate, we find a positive correlation ( R 2 = 0.89) between the logarithmic accumulation rate and crusts per annual layer in surface snow. By counting crusts in two Antarctic firn cores, we can show the preservation of crusts with depth and discuss their temporal variability as well as the sensitivity to accumulation rate. In local applications we test the robustness of crusts as a seasonal proxy in comparison to chemical records like impurities or stable water isotopes. While in regions with high accumulation rates the occurrence of crusts shows signs of seasonality, in low accumulation areas dating of the snowpack should be done using a combination of volumetric and stratigraphic elements. Our data can bring new insights for the study of firn permeability, improving of remote sensing signals or the development of new proxies in snow and firn core research.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biomaterials, Elsevier BV, Vol. 257 ( 2020-10), p. 120247-
    Type of Medium: Online Resource
    ISSN: 0142-9612
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2004010-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...