GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 1201-1201
    Abstract: Purpose: Anaplastic Lymphoma Kinase (ALK) aberrations have been identified in pediatric type infant gliomas, but their occurrence across age groups, functional effects, and treatment response have not been broadly established. Experimental Design: We performed a comprehensive analysis of ALK expression and genomic aberrations in both newly-generated and retrospective data from 371 glioblastomas (156 adult, 205 infant/pediatric and 10 congenital) with in vitro and in vivo validation of aberrations. Results: ALK aberrations at the protein or genomic level were detected in 12% of gliomas (45/371) in a wide age range (0-80 years). Recurrent as well as novel ALK fusions (LRRFIP1-ALK, DCTN1-ALK, PRKD3-ALK) were present in 50% (5/10) of congenital/infant, 1.4% (3/205) of pediatric, and 1.9% (3/156) of adult GBMs. ALK fusions were present as the only candidate driver in congenital/infant GBMs, and were sometimes focally amplified. In contrast, adult ALK fusions co-occurred with other oncogenic drivers. No activating ALK mutations were identified in any age group. Novel and recurrent ALK rearrangements promoted STAT3 and ERK1/2 pathways and transformation in vitro and in vivo. ALK-fused GBM cellular and mouse models were responsive to ALK inhibitors, including in patient cells derived from a congenital GBM. Relevant to treatment of infant gliomas, we showed that ALK protein appears minimally expressed in the forebrain at perinatal stages and no gross effects on perinatal brain development was seen in pregnant mice treated with the ALK inhibitor ceritinib. Conclusions: These findings support expanded evaluation of brain-penetrant ALK inhibitors in clinical trials across infant, pediatric, and adult GBMs. Citation Format: Anne-Florence Blandin, Ross Giglio, Maya Srikanth Graham, Guadalupe Garcia, Seth Malinowski, Jared K. Woods, Shakti Ramkissoon, Lori Ramkissoon, Frank Dubois, Kate Schoolcraft, Jessica W. Tsai, Dayle K. Wang, Robert Jones, Jayne Vogelzang, Kristine Pelton, Sarah Becker, Fiona Watkinson, Claire Sinai, Elizabeth Cohen, Matthew Booker, Michael Tolstorukov, Veerle Haemels, Liliana Goumnerova, Karen Wright, Mark Kieran, Katie Fehnel, David Reardon, Arnault Tauziede-Espariat, Rishi Lulla, Benjamin Carcamo, Stanley Chaleff, Alain Charest, Frederik De Smet, Azra H. Ligon, Adrian Dubuc, Melanie Pagès, Pascale Varlet, Patrick Wen, Brian Alexander, Susan Chi, Sanda Alexandrescu, Ralf Kittler, Robert Bachoo, Rameen Beroukhim, Pratiti Bandopadhayay, Keith L. Ligon. ALK amplification and rearrangements are recurrent targetable events in congenital and adult glioblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1201.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_1 ( 2022-06-03), p. i21-i22
    Abstract: BACKGROUND: Understanding how aberrant transcription factors (TFs) hijack normal development to induce oncogenesis is a critical question in oncology. Forkhead box (FOX) proteins are a superfamily of transcriptional regulators characterized by a forkhead DNA-binding domain. Within this family, Forkhead Box R2 (FOXR2) has been identified as a candidate structural variant (SV) driver in a subset of pediatric cancers including CNS embryonal tumors and peripheral neuroblastoma. While FOXR2 has been shown to stabilize MYC isoforms, the mechanistic details through which it enhances tumor formation, other non-SV mechanisms of activating aberrant expression, and the true extent of its role as an oncogene across all cancers have not been systematically evaluated. METHODS: We applied an integrative approach using transcriptomics, epigenetics, in vitro cancer models, and in vivo mouse models to systematically evaluate the mechanisms by which FOXR2 is activated across human cancers. RESULTS: We performed a pan-cancer analysis of FOXR2 activation across over 10,000 adult and pediatric cancer samples, and surprisingly found FOXR2 to be aberrantly upregulated in 70% of all cancer types (including diffuse midline gliomas), and 8% of all individual tumors. FOXR2 expression occurred predominantly in the absence of rearrangement/fusions, single nucleotide variants, or copy number aberrations at the DNA level. Transcriptomic and epigenomic analyses show the vast majority of tumors (78%) aberrantly express FOXR2 through a previously undescribed epigenetic mechanism via hypomethylation of a novel promoter. Using both in vitro and in vivo models, we demonstrate that FOXR2 expression is both sufficient and necessary for transformation across multiple lineages, including DMGs. CONCLUSION: Taken together, this study demonstrates that FOXR2 is a novel and potent oncogene across pediatric and adult cancers, and highlights a new epigenetic mechanism by which its expression is activated.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_1 ( 2022-06-03), p. i68-i69
    Abstract: BACKGROUND: Genomic and transcriptomic studies have elucidated new insights into the landscape of diffuse intrinsic pontine glioma (DIPG). However, the role of long non-coding RNAs (lncRNAs) has not been explored at depth in these tumors, and there have not been studies focused on how lncRNAs interact with the K27M histone mutation. In a recent analysis of nearly 200 DIPGs and pediatric high-grade gliomas (pHGG), we previously detected a novel, recurring structural variant in the lncRNA CCDC26. This rearrangement occurs in nearly 10% of all DIPGs, and we have furthermore identified alterations in more than 100 lncRNAs in DIPG. METHODS: To identify lncRNAs required for proliferation of patient-derived DIPG cancer cells, we designed two custom genome-scale lncRNA libraries. We generated a genome-scale lncRNA CRISPR-Cas9 knockout pooled library, consisting of 45,766 single guide RNAs (sgRNAs). Additionally, we generated a genome-wide CRISPR interference pooled library consisting of 45,608 sgRNAs, targeting lncRNA transcription start sites (TSS). RESULTS: We utilized in vitro histone-mutant pHGG models as well as edited clones of these models with the K27M mutant corrected in order to compare lncRNA dependencies in these two contexts. We have successfully performed genome-scale CRISPR-Cas9 knockout and CRISPR interference screens targeting lncRNAs in these cell lines, revealing lncRNA dependencies. Candidate dependencies in our CRISPR-Cas9 knockout screen include LOC100507412, LOC105379524, and LINC02193. CONCLUSION: Genome-wide lncRNA CRISPR knock-out and CRISPR interference screens are a novel approach for the unbiased identification of lncRNAs that are required for pediatric high-grade glioma proliferation. Further validation of specific lncRNAs is required, and these lncRNA dependencies represent potential novel therapeutic targets.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 5730-5730
    Abstract: Background: Understanding how aberrant transcription factors (TFs) hijack normal development to induce oncogenesis is a critical question in oncology. Forkhead box (FOX) proteins are a superfamily of transcriptional regulators characterized by a forkhead DNA-binding domain. Within this family, Forkhead Box R2 (FOXR2) expression has been associated with a subset of cancers including CNS and peripheral neuroblastoma. While FOXR2 has been shown to stabilize MYC isoforms, the mechanistic details through which it enhances tumor formation and the true extent of its role as an oncogene across all cancers have not been systematically evaluated. Methods: We applied an integrative approach using transcriptomics, epigenetics, in vitro cancer models, and in vivo mouse models to systematically evaluate the mechanisms by which FOXR2 is activated across human cancers. Results: We performed a pan-cancer analysis of FOXR2 activation across over 10,000 adult and pediatric cancer samples, and found FOXR2 to be aberrantly upregulated in 70% of all cancer types, and 8% of all individual tumors. We identified genetic and epigenetic mechanisms that induce its expression, including hypomethylation of a novel promoter in the vast majority (78%) of FOXR2-expressing cases. We demonstrate that FOXR2 expression is both sufficient and necessary for transformation across multiple lineages, using both in vitro and in vivo models. Conclusion: Taken together, this study demonstrates the role of FOXR2 as a potent oncogene across human cancers, and highlights a novel mechanism by which its expression is activated. Citation Format: Jessica W. Tsai, Paloma Cejas, Dayle K. Wang, Smruti Patel, David W. Wu, Phonepasong Arounleut, Xin Wei, Ningxuan Zhou, Sudeepa Syamala, Frank P. Dubois, Kristine Pelton, Jayne Vogelzang, Cecilia Sousa, Audrey Baguette, Xiaolong Chen, Alexandra L. Condurat, Sarah E. Dixon-Clarke, Kevin N. Zhou, Sophie D. Lu, Elizabeth M. Gonzalez, Madison S. Chacon, Jeromy J. Digiacomo, Rushil Kumbhani, Dana Novikov, J'Ya Hunter, Maria Tsoli, David S. Ziegler, Uta Dirksen, Natalie Jager, Gnana Prakash Balasubramanian, Christof M. Kramm, Michaela Nathrath, Stefan Bielack, Suzanne J. Baker, Jinghui Zhang, James M. McFarland, Gad Getz, Francois Aguet, Nada Jabado, Olaf Witt, Stefan M. Pfister, Keith L. Ligon, Claudia Kleinman, Henry Long, David T. Jones, Pratiti Bandopadhayay, Timothy N. Phoenix. FOXR2 is an oncogenic driver across adult and pediatric cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5730.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3562-3562
    Abstract: Background: Diffuse midline gliomas (DMGs) are a universally fatal brain tumor of childhood. While histone mutations are a critical tumor initiating event, they are insufficient to drive gliomagenesis. Histone mutations co-occur with somatic alterations in other pathways including TP53, MAPK, and MYC signaling. However, the mechanisms through which these pathways are activated have not been fully elucidated. Methods: We applied an integrative approach using transcriptomics, epigenetics, proteomics, in vitro cancer models, and in vivo mouse models to systematically evaluate how FOXR2 mediates gliomagenesis. Results: We have recently found that a subset of DMGs aberrantly express FOXR2, a forkhead transcription factor. FOXR2 is both sufficient to enhance tumor formation, and necessary for FOXR2-expressing DMGs. While FOXR2 indeed enhances MYC protein stability, FOXR2 exerts oncogenesis through MYC-independent functions and specifically hijacks E26-transformation specific (ETS) transcriptional circuits and FOXR2 DNA-binding is highly enriched at ETS motifs. We have performed proteomic and phospho-proteomic analysis of FOXR2-expressing human neural stem cells to identify proteins and phospho-sites that are highly enriched in FOXR2-expressing cells. Conclusion: Taken together, this study elucidates how FOXR2 interacts with ETS transcription factors to mediate oncogenesis, and further highlights a role for FOXR2 in activating ETS and MAPK signaling. Citation Format: Jessica W. Tsai, Paloma Cejas, Marissa Coppola, Dayle K. Wang, Smruti Patel, David W. Wu, Phonepasong Arounleut, Xin Wei, Ningxuan Zhou, Sudeepa Syamala, Frank P. Dubois, Kristine Pelton, Jayne Vogelzang, Cecilia Sousa, Audrey Baguette, Xiaolong Chen, Alexandra L. Condurat, Sarah E. Dixon-Clarke, Annarah Charles, Kevin N. Zhou, Sophie D. Lu, Elizabeth M. Gonzalez, Madison S. Chacon, Jeromy J. Digiacomo, Rushil Kumbhani, Dana Novikov, Maria Tsoli, David S. Ziegler, Uta Dirksen, Natalie Jager, Gnana Prakash Balasubramanian, Christof M. Kramm, Michaela Nathrath, Stefan Bielack, Suzanne J. Baker, Jinghui Zhang, James M. McFarland, Gad Getz, Francois Aguet, Nada Jabado, Olaf Witt, Stefan M. Pfister, Keith L. Ligon, Volker Hovestadt, Claudia Kleinman, Henry Long, David T. Jones, Pratiti Bandopadhayay, Timothy N. Phoenix. Dissecting mechanisms underlying FOXR2-mediated gliomagenesis in diffuse midline gliomas. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3562.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 17 ( 2022-09-02), p. 2980-3001
    Abstract: Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. Significance: This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Cancer, Springer Science and Business Media LLC, Vol. 3, No. 8 ( 2022-07-04), p. 994-1011
    Type of Medium: Online Resource
    ISSN: 2662-1347
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 3005299-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 29, No. 14 ( 2023-07-14), p. 2651-2667
    Abstract: Anaplastic lymphoma kinase (ALK) aberrations have been identified in pediatric-type infant gliomas, but their occurrence across age groups, functional effects, and treatment response has not been broadly established. Experimental Design: We performed a comprehensive analysis of ALK expression and genomic aberrations in both newly generated and retrospective data from 371 glioblastomas (156 adult, 205 infant/pediatric, and 10 congenital) with in vitro and in vivo validation of aberrations. Results: ALK aberrations at the protein or genomic level were detected in 12% of gliomas (45/371) in a wide age range (0–80 years). Recurrent as well as novel ALK fusions (LRRFIP1–ALK, DCTN1–ALK, PRKD3–ALK) were present in 50% (5/10) of congenital/infant, 1.4% (3/205) of pediatric, and 1.9% (3/156) of adult GBMs. ALK fusions were present as the only candidate driver in congenital/infant GBMs and were sometimes focally amplified. In contrast, adult ALK fusions co-occurred with other oncogenic drivers. No activating ALK mutations were identified in any age group. Novel and recurrent ALK rearrangements promoted STAT3 and ERK1/2 pathways and transformation in vitro and in vivo. ALK-fused GBM cellular and mouse models were responsive to ALK inhibitors, including in patient cells derived from a congenital GBM. Relevant to the treatment of infant gliomas, we showed that ALK protein appears minimally expressed in the forebrain at perinatal stages, and no gross effects on perinatal brain development were seen in pregnant mice treated with the ALK inhibitor ceritinib. Conclusions: These findings support use of brain-penetrant ALK inhibitors in clinical trials across infant, pediatric, and adult GBMs. See related commentary by Mack and Bertrand, p. 2567
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2004
    In:  The Journal of Physical Chemistry A Vol. 108, No. 16 ( 2004-04-01), p. 3292-3303
    In: The Journal of Physical Chemistry A, American Chemical Society (ACS), Vol. 108, No. 16 ( 2004-04-01), p. 3292-3303
    Type of Medium: Online Resource
    ISSN: 1089-5639 , 1520-5215
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2004
    detail.hit.zdb_id: 2006031-2
    detail.hit.zdb_id: 1357795-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...