GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 4, No. 1 ( 2022-01-01)
    Abstract: Reliable detection and precise volumetric quantification of brain metastases (BM) on MRI are essential for guiding treatment decisions. Here we evaluate the potential of artificial neural networks (ANN) for automated detection and quantification of BM. Methods A consecutive series of 308 patients with BM was used for developing an ANN (with a 4:1 split for training/testing) for automated volumetric assessment of contrast-enhancing tumors (CE) and non-enhancing FLAIR signal abnormality including edema (NEE). An independent consecutive series of 30 patients was used for external testing. Performance was assessed case-wise for CE and NEE and lesion-wise for CE using the case-wise/lesion-wise DICE-coefficient (C/L-DICE), positive predictive value (L-PPV) and sensitivity (C/L-Sensitivity). Results The performance of detecting CE lesions on the validation dataset was not significantly affected when evaluating different volumetric thresholds (0.001–0.2 cm3; P = .2028). The median L-DICE and median C-DICE for CE lesions were 0.78 (IQR = 0.6–0.91) and 0.90 (IQR = 0.85–0.94) in the institutional as well as 0.79 (IQR = 0.67–0.82) and 0.84 (IQR = 0.76–0.89) in the external test dataset. The corresponding median L-Sensitivity and median L-PPV were 0.81 (IQR = 0.63–0.92) and 0.79 (IQR = 0.63–0.93) in the institutional test dataset, as compared to 0.85 (IQR = 0.76–0.94) and 0.76 (IQR = 0.68–0.88) in the external test dataset. The median C-DICE for NEE was 0.96 (IQR = 0.92–0.97) in the institutional test dataset as compared to 0.85 (IQR = 0.72–0.91) in the external test dataset. Conclusion The developed ANN-based algorithm (publicly available at www.github.com/NeuroAI-HD/HD-BM) allows reliable detection and precise volumetric quantification of CE and NEE compartments in patients with BM.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: European Radiology, Springer Science and Business Media LLC
    Abstract: To quantify regional manifestations related to COPD as anomalies from a modeled distribution of normal-appearing lung on chest CT using a deep learning (DL) approach, and to assess its potential to predict disease severity. Materials and methods Paired inspiratory/expiratory CT and clinical data from COPDGene and COSYCONET cohort studies were included. COPDGene data served as training/validation/test data sets ( N = 3144/786/1310) and COSYCONET as external test set ( N = 446). To differentiate low-risk (healthy/minimal disease, [GOLD 0]) from COPD patients (GOLD 1–4), the self-supervised DL model learned semantic information from 50 × 50 × 50 voxel samples from segmented intact lungs. An anomaly detection approach was trained to quantify lung abnormalities related to COPD, as regional deviations. Four supervised DL models were run for comparison. The clinical and radiological predictive power of the proposed anomaly score was assessed using linear mixed effects models (LMM). Results The proposed approach achieved an area under the curve of 84.3 ± 0.3 ( p 〈 0.001) for COPDGene and 76.3 ± 0.6 ( p 〈 0.001) for COSYCONET, outperforming supervised models even when including only inspiratory CT. Anomaly scores significantly improved fitting of LMM for predicting lung function, health status, and quantitative CT features (emphysema/air trapping; p 〈 0.001). Higher anomaly scores were significantly associated with exacerbations for both cohorts ( p 〈 0.001) and greater dyspnea scores for COPDGene ( p 〈 0.001). Conclusion Quantifying heterogeneous COPD manifestations as anomaly offers advantages over supervised methods and was found to be predictive for lung function impairment and morphology deterioration. Clinical relevance statement Using deep learning, lung manifestations of COPD can be identified as deviations from normal-appearing chest CT and attributed an anomaly score which is consistent with decreased pulmonary function, emphysema, and air trapping. Key Points • A self-supervised DL anomaly detection method discriminated low-risk individuals and COPD subjects, outperforming classic DL methods on two datasets (COPDGene AUC = 84.3%, COSYCONET AUC = 76.3%). • Our contrastive task exhibits robust performance even without the inclusion of expiratory images, while voxel-based methods demonstrate significant performance enhancement when incorporating expiratory images, in the COPDGene dataset. • Anomaly scores improved the fitting of linear mixed effects models in predicting clinical parameters and imaging alterations (p 〈 0.001) and were directly associated with clinical outcomes (p 〈 0.001).
    Type of Medium: Online Resource
    ISSN: 1432-1084
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1472718-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...