GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Progress in Oceanography, Elsevier BV, Vol. 174 ( 2019-05), p. 72-88
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Climate of the Past, Copernicus GmbH, Vol. 18, No. 8 ( 2022-08-02), p. 1729-1756
    Abstract: Abstract. Antarctic sea ice plays a critical role in the Earth system, influencing energy, heat and freshwater fluxes, air–sea gas exchange, ice shelf dynamics, ocean circulation, nutrient cycling, marine productivity and global carbon cycling. However, accurate simulation of recent sea-ice changes remains challenging and, therefore, projecting future sea-ice changes and their influence on the global climate system is uncertain. Reconstructing past changes in sea-ice cover can provide additional insights into climate feedbacks within the Earth system at different timescales. This paper is the first of two review papers from the Cycles of Sea Ice Dynamics in the Earth system (C-SIDE) working group. In this first paper, we review marine- and ice core-based sea-ice proxies and reconstructions of sea-ice changes throughout the last glacial–interglacial cycle. Antarctic sea-ice reconstructions rely mainly on diatom fossil assemblages and highly branched isoprenoid (HBI) alkenes in marine sediments, supported by chemical proxies in Antarctic ice cores. Most reconstructions for the Last Glacial Maximum (LGM) suggest that winter sea ice expanded all around Antarctica and covered almost twice its modern surface extent. In contrast, LGM summer sea ice expanded mainly in the regions off the Weddell and Ross seas. The difference between winter and summer sea ice during the LGM led to a larger seasonal cycle than today. More recent efforts have focused on reconstructing Antarctic sea ice during warm periods, such as the Holocene and the Last Interglacial (LIG), which may serve as an analogue for the future. Notwithstanding regional heterogeneities, existing reconstructions suggest that sea-ice cover increased from the warm mid-Holocene to the colder Late Holocene with pervasive decadal- to millennial-scale variability throughout the Holocene. Studies, supported by proxy modelling experiments, suggest that sea-ice cover was halved during the warmer LIG when global average temperatures were ∼2 ∘C above the pre-industrial (PI). There are limited marine (14) and ice core (4) sea-ice proxy records covering the complete 130 000 year (130 ka) last glacial cycle. The glacial–interglacial pattern of sea-ice advance and retreat appears relatively similar in each basin of the Southern Ocean. Rapid retreat of sea ice occurred during Terminations II and I while the expansion of sea ice during the last glaciation appears more gradual especially in ice core data sets. Marine records suggest that the first prominent expansion occurred during Marine Isotope Stage (MIS) 4 and that sea ice reached maximum extent during MIS 2. We, however, note that additional sea-ice records and transient model simulations are required to better identify the underlying drivers and feedbacks of Antarctic sea-ice changes over the last 130 ka. This understanding is critical to improve future predictions.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Marine Systems, Elsevier BV, Vol. 180 ( 2018-04), p. 59-75
    Type of Medium: Online Resource
    ISSN: 0924-7963
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1483106-5
    detail.hit.zdb_id: 1041191-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Climate of the Past, Copernicus GmbH, Vol. 16, No. 6 ( 2020-12-11), p. 2459-2483
    Abstract: Abstract. In the last decades, changing climate conditions have had a severe impact on sea ice at the western Antarctic Peninsula (WAP), an area rapidly transforming under global warming. To study the development of spring sea ice and environmental conditions in the pre-satellite era we investigated three short marine sediment cores for their biomarker inventory with a particular focus on the sea ice proxy IPSO25 and micropaleontological proxies. The core sites are located in the Bransfield Strait in shelf to deep basin areas characterized by a complex oceanographic frontal system, coastal influence and sensitivity to large-scale atmospheric circulation patterns. We analyzed geochemical bulk parameters, biomarkers (highly branched isoprenoids, glycerol dialkyl glycerol tetraethers, sterols), and diatom abundances and diversity over the past 240 years and compared them to observational data, sedimentary and ice core climate archives, and results from numerical models. Based on biomarker results we identified four different environmental units characterized by (A) low sea ice cover and high ocean temperatures, (B) moderate sea ice cover with decreasing ocean temperatures, (C) high but variable sea ice cover during intervals of lower ocean temperatures, and (D) extended sea ice cover coincident with a rapid ocean warming. While IPSO25 concentrations correspond quite well to satellite sea ice observations for the past 40 years, we note discrepancies between the biomarker-based sea ice estimates, the long-term model output for the past 240 years, ice core records, and reconstructed atmospheric circulation patterns such as the El Niño–Southern Oscillation (ENSO) and Southern Annular Mode (SAM). We propose that the sea ice biomarker proxies IPSO25 and PIPSO25 are not linearly related to sea ice cover, and, additionally, each core site reflects specific local environmental conditions. High IPSO25 and PIPSO25 values may not be directly interpreted as referring to high spring sea ice cover because variable sea ice conditions and enhanced nutrient supply may affect the production of both the sea-ice-associated and phytoplankton-derived (open marine, pelagic) biomarker lipids. For future interpretations we recommend carefully considering individual biomarker records to distinguish between cold sea-ice-favoring and warm sea-ice-diminishing environmental conditions.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 5 ( 2021-10-29), p. 2305-2326
    Abstract: Abstract. The importance of Antarctic sea ice and Southern Ocean warming has come into the focus of polar research during the last couple of decades. Especially around West Antarctica, where warm water masses approach the continent and where sea ice has declined, the distribution and evolution of sea ice play a critical role in the stability of nearby ice shelves. Organic geochemical analyses of marine seafloor surface sediments from the Antarctic continental margin allow an evaluation of the applicability of biomarker-based sea-ice and ocean temperature reconstructions in these climate-sensitive areas. We analysed highly branched isoprenoids (HBIs), such as the sea-ice proxy IPSO25 and phytoplankton-derived HBI-trienes, as well as phytosterols and isoprenoidal glycerol dialkyl glycerol tetraethers (GDGTs), which are established tools for the assessment of primary productivity and ocean temperatures respectively. The combination of IPSO25 with a phytoplankton marker (i.e. the PIPSO25 index) permits semi-quantitative sea-ice reconstructions and avoids misleading over- or underestimations of sea-ice cover. Comparisons of the PIPSO25-based sea-ice distribution patterns and TEX86L- and RI-OH′-derived ocean temperatures with (1) sea-ice concentrations obtained from satellite observations and (2) instrument measurements of sea surface and subsurface temperatures corroborate the general capability of these proxies to determine oceanic key variables properly. This is further supported by model data. We also highlight specific aspects and limitations that need to be taken into account for the interpretation of such biomarker data and discuss the potential of IPSO25 as an indicator for the former occurrence of platelet ice and/or the export of ice-shelf water.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Marine Chemistry, Elsevier BV, ( 2024-5), p. 104401-
    Type of Medium: Online Resource
    ISSN: 0304-4203
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 184352-7
    detail.hit.zdb_id: 1497339-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-5-12)
    Abstract: In the Western Tropical South Pacific (WTSP) Ocean, a hotspot of dinitrogen fixation has been identified. The survival of diazotrophs depends, among others, on the availability of dissolved iron (DFe) largely originating, as recently revealed, from shallow hydrothermal sources located along the Tonga-Kermadec arc that fertilize the Lau Basin with this element. On the opposite, these fluids, released directly close to the photic layer, can introduce numerous trace metals at concentrations that can be toxic to surface communities. Here, we performed an innovative 9-day experiment in 300 L reactors onboard the TONGA expedition, to examine the effects of hydrothermal fluids on natural plankton communities in the WTSP Ocean. Different volumes of fluids were mixed with non-hydrothermally influenced surface waters (mixing ratio from 0 to 14.5%) and the response of the communities was studied by monitoring numerous stocks and fluxes (phytoplankton biomass, community composition, net community production, N 2 fixation, thiol production, organic carbon and metal concentrations in exported material). Despite an initial toxic effect of hydrothermal fluids on phytoplankton communities, these inputs led to higher net community production and N 2 fixation rates, as well as elevated export of organic matter relative to control. This fertilizing effect was achieved through detoxification of the environment, rich in potentially toxic elements (e.g., Cu, Cd, Hg), likely by resistant Synechococcus ecotypes able to produce strong binding ligands, especially thiols (thioacetamide-like and glutathione-like compounds). The striking increase of thiols quickly after fluid addition likely detoxified the environment, rendering it more favorable for phytoplankton growth. Indeed, phytoplankton groups stressed by the addition of fluids were then able to recover important growth rates, probably favored by the supply of numerous fertilizing trace metals (notably Fe) from hydrothermal fluids and new nitrogen provided by N 2 fixation. These experimental results are in good agreement with in-situ observations, proving the causal link between the supply of hydrothermal fluids emitted at shallow depth into the surface layer and the intense biological productivity largely supported by diazotrophs in the WTSP Ocean. This study highlights the importance of considering shallow hydrothermal systems for a better understanding of the biological carbon pump.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Climate of the Past, Copernicus GmbH, Vol. 19, No. 9 ( 2023-09-21), p. 1825-1845
    Abstract: Abstract. As remnants of living organisms, alkenones and isoprenoid glycerol dialkyl glycerol tetraether lipids (isoGDGTs) are widely used biomarkers for determining ocean water temperatures from the past. The organisms that these proxy carriers stem from are influenced by a number of environmental parameters, such as water depth, nutrient availability, light conditions, or seasonality, which all may significantly bias the calibration to ambient water temperatures. Reliable temperature determinations thus remain challenging, especially in higher latitudes and for undersampled regions. We analyzed 33 sediment surface samples from the southern Chilean continental margin and the Drake Passage for alkenones and isoGDGTs and compared the results with gridded instrumental reference data from the World Ocean Atlas 2005 (WOA05) and previously published data from an extended study area covering the central and western South Pacific towards the Aotearoa / New Zealand continental margin. We show that for alkenone-derived sea surface temperatures (SSTs), the widely used global core-top calibration of Müller et al. (1998) yields the smallest deviation of the WOA05-based SSTs. On the contrary, the calibration of Sikes et al. (1997), determined for higher latitudes and summer SSTs, overestimates modern WOA05-based SSTs in both the annual mean and summer. Our alkenone SSTs show a slight seasonal shift of ∼ 1 ∘C at the southern Chilean margin and up to ∼ 2 ∘C in the Drake Passage towards austral summer SSTs. Samples in the central South Pacific, on the other hand, reflect an annual mean signal. We show that for isoGDGT-based temperatures, the subsurface calibration of Kim et al. (2012a) best reflects temperatures from the WOA05 in areas north of the Subantarctic Front (SAF). Temperatures south of the SAF are, in contrast, significantly overestimated by up to 14 ∘C, irrespective of the applied calibration. In addition, we used the GDGT [2]/[3] ratios, which give an indication of the production depth of the isoGDGTs and/or potential influences from land. Our samples reflect a subsurface (0–200 m water depth) rather than a surface (0–50 m water depth) signal in the entire study area and show a correlation with the monthly dust distribution in the South Pacific, indicating terrigenous influences. The overestimation of isoGDGT surface and subsurface temperatures south of the SAF highlights the need for a reassessment of existing calibrations in the polar Southern Ocean. Therefore, we suggest a modified Southern Ocean tetraether index (TEX86)-based calibration for surface and subsurface temperatures, which shows a lower temperature sensitivity and yields principally lower absolute temperatures, which align more closely with WOA05-derived values and also OH–isoGDGT-derived temperatures.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 15 ( 2019-08-02), p. 2961-2981
    Abstract: Abstract. Organic geochemical and micropaleontological analyses of surface sediments collected in the southern Drake Passage and the Bransfield Strait, Western Antarctic Peninsula, enable a proxy-based reconstruction of recent sea ice conditions in this climate-sensitive area. We study the distribution of the sea ice biomarker IPSO25, and biomarkers of open marine environments such as more unsaturated highly branched isoprenoid alkenes and phytosterols. Comparison of the sedimentary distribution of these biomarker lipids with sea ice data obtained from satellite observations and diatom-based sea ice estimates provide for an evaluation of the suitability of these biomarkers to reflect recent sea surface conditions. The distribution of IPSO25 supports earlier suggestions that the source diatom seems to be common in near-coastal environments characterized by annually recurring sea ice cover, while the distribution of the other biomarkers is highly variable. Offsets between sea ice estimates deduced from the abundance of biomarkers and satellite-based sea ice data are attributed to the different time intervals recorded within the sediments and the instrumental records from the study area, which experienced rapid environmental changes during the past 100 years. To distinguish areas characterized by permanently ice-free conditions, seasonal sea ice cover and extended sea ice cover, we apply the concept of the PIP25 index from the Arctic Ocean to our data and introduce the term PIPSO25 as a potential sea ice proxy. While the trends in PIPSO25 are generally consistent with satellite sea ice data and winter sea ice concentrations in the study area estimated by diatom transfer functions, more studies on the environmental significance of IPSO25 as a Southern Ocean sea ice proxy are needed before this biomarker can be applied for semi-quantitative sea ice reconstructions.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...