GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of the American Society of Nephrology, Ovid Technologies (Wolters Kluwer Health), Vol. 30, No. 1 ( 2019-1), p. 63-78
    Abstract: Nephron number is a major determinant of long-term renal function and cardiovascular risk. Observational studies suggest that maternal nutritional and metabolic factors during gestation contribute to the high variability of nephron endowment. However, the underlying molecular mechanisms have been unclear. Methods We used mouse models, including DNA methyltransferase ( Dnmt1, Dnmt3a, and Dnmt3b ) knockout mice, optical projection tomography, three-dimensional reconstructions of the nephrogenic niche, and transcriptome and DNA methylation analysis to characterize the role of DNA methylation for kidney development. Results We demonstrate that DNA hypomethylation is a key feature of nutritional kidney growth restriction in vitro and in vivo, and that DNA methyltransferases Dnmt1 and Dnmt3a are highly enriched in the nephrogenic zone of the developing kidneys. Deletion of Dnmt1 in nephron progenitor cells (in contrast to deletion of Dnmt3a or Dnm3b ) mimics nutritional models of kidney growth restriction and results in a substantial reduction of nephron number as well as renal hypoplasia at birth. In Dnmt1 -deficient mice, optical projection tomography and three-dimensional reconstructions uncovered a significant reduction of stem cell niches and progenitor cells. RNA sequencing analysis revealed that global DNA hypomethylation interferes in the progenitor cell regulatory network, leading to downregulation of genes crucial for initiation of nephrogenesis, Wt1 and its target Wnt4. Derepression of germline genes, protocadherins, Rhox genes, and endogenous retroviral elements resulted in the upregulation of IFN targets and inhibitors of cell cycle progression. Conclusions These findings establish DNA methylation as a key regulatory event of prenatal renal programming, which possibly represents a fundamental link between maternal nutritional factors during gestation and reduced nephron number.
    Type of Medium: Online Resource
    ISSN: 1046-6673 , 1533-3450
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 2029124-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Genetics & Genomic Medicine, Wiley, Vol. 9, No. 3 ( 2021-03)
    Abstract: Netherton syndrome (NS) is a genodermatosis caused by loss‐of‐function mutations in SPINK5 , resulting in aberrant LEKTI expression. Method Next‐generation sequencing of SPINK5 (NM_001127698.1) was carried out and functional studies were performed by immunofluorescence microscopy of a lesional skin biopsy using anti‐LEKTI antibodies. Results We describe a novel SPINK5 likely pathogenic donor splice site variant (NM_001127698.1:c.2015+5G 〉 A) in a patient with NS and confirm its functional significance by demonstrating complete loss of LEKTI expression in lesional skin by immunofluorescence analysis. Conclusion The 2015+5G 〉 A is a novel, likely pathogenic variant in NS. Herein we review and assimilate documented SPINK5 pathogenic variants and discuss possible genotype–phenotype associations in NS.
    Type of Medium: Online Resource
    ISSN: 2324-9269 , 2324-9269
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2734884-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 52 ( 2020-12-29), p. 32929-32938
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 52 ( 2020-12-29), p. 32929-32938
    Abstract: There is no theoretical limit in using molecular networks to harvest diffusive sun photons on large areas and funnel them onto much smaller areas of highly efficient but also precious energy-converting materials. The most effective concept reported so far is based on a pool of randomly oriented, light-harvesting donor molecules that funnel all excitation quanta by ultrafast energy transfer to individual light-redirecting acceptor molecules oriented parallel to the energy converters. However, the best practical light-harvesting system could only be discovered by empirical screening of molecules that either align or not within stretched polymers and the maximum absorption wavelength of the empirical system was far away from the solar maximum. No molecular property was known explaining why certain molecules would align very effectively whereas similar molecules did not. Here, we first explore what molecular properties are responsible for a molecule to be aligned. We found a parameter derived directly from the molecular structure with a high predictive power for the alignability. In addition, we found a set of ultrafast funneling molecules that harvest three times more energy in the solar’s spectrum peak for GaInP photovoltaics. A detailed study on the ultrafast dipole moment reorientation dynamics demonstrates that refocusing of the diffusive light is based on ∼15-ps initial dipole moment depolarization followed by ∼50-ps repolarization into desired directions. This provides a detailed understanding of the molecular depolarization/repolarization processes responsible for refocusing diffusively scattered photons without violating the second law of thermodynamics.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...