GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 21 ( 2021-11-03), p. 16161-16182
    Abstract: Abstract. The physical and chemical properties of black carbon (BC) and organic aerosols are important for predicting their radiative forcing in the atmosphere. During the Soot Aerodynamic Size Selection for Optical properties (SASSO) project and a EUROCHAMP-2020 transnational access project, different types of light-absorbing carbon were studied, including BC from catalytically stripped diesel exhaust, an inverted flame burner, a colloidal graphite standard (Aquadag) and controlled flaming wood combustion. Brown carbon (BrC) was also investigated in the form of organic aerosol emissions from wood burning (pyrolysis and smouldering) and from the nitration of secondary organic aerosol (SOA) proxies produced in a photochemical reaction chamber. Here we present insights into the physical and chemical properties of the aerosols, with optical properties presented in subsequent publications. The dynamic shape factor (χ) of BC particles and material density (ρm) of organic aerosols was investigated by coupling a charging-free Aerodynamic Aerosol Classifier (AAC) with a Centrifugal Particle Mass Analyzer (CPMA) and a Scanning Mobility Particle Sizer (SMPS). The morphology of BC particles was captured by transmission electron microscopy (TEM). For BC particles from the diesel engine and flame burner emissions, the primary spherule sizes were similar, around 20 nm. With increasing particle size, BC particles adopted more collapsed/compacted morphologies for the former source but tended to show more aggregated morphologies for the latter source. For particles emitted from the combustion of dry wood samples, the χ of BC particles and the ρm of organic aerosols were observed in the ranges 1.8–2.17 and 1.22–1.32 g cm−3, respectively. Similarly, for wet wood samples, the χ and ρm ranges were 1.2–1.85 and 1.44–1.60 g cm−3, respectively. Aerosol mass spectrometry measurements show no clear difference in mass spectra of the organic aerosols in individual burn phases (pyrolysis or smouldering phase) with the moisture content of the wood samples. This suggests that the effect moisture has on the organic chemical profile of wood burning emissions is through changing the durations of the different phases of the burn cycle, not through the chemical modification of the individual phases. In this study, the incandescence signal of a Single Particle Soot Photometer (SP2) was calibrated with three different types of BC particles and compared with that from an Aquadag standard that is commonly used to calibrate SP2 incandescence to a BC mass. A correction factor is defined as the ratio of the incandescence signal from an alternative BC source to that from the Aquadag standard and took values of 0.821 ± 0.002 (or 0.794 ± 0.005), 0.879 ± 0.003 and 0.843 ± 0.028 to 0.913 ± 0.009 for the BC particles emitted from the diesel engine running under hot (or cold idle) conditions, the flame burner and wood combustion, respectively. These correction factors account for differences in instrument response to BC from different sources compared to the standardised Aquadag calibration and are more appropriate than the common value of 0.75 recommended by Laborde et al. (2012b) when deriving the mass concentration of BC emitted from diesel engines. Quantifying the correction factor for many types of BC particles found commonly in the atmosphere may enable better constraints to be placed on this factor depending on the BC source being sampled and thus improve the accuracy of future SP2 measurements of BC mass concentrations.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 4 ( 2020-03-02), p. 2471-2487
    Abstract: Abstract. Nitro-monoaromatic hydrocarbons (NMAHs), such as nitrocatechols, nitrophenols and nitrosalicylic acids, are important constituents of atmospheric particulate matter (PM) water-soluble organic carbon (WSOC) and humic-like substances (HULIS). Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are toxic and ubiquitous in the ambient air; due to their light absorption properties, together with NMAHs, they are part of aerosol brown carbon (BrC). We investigated the winter concentrations of these substance classes in size-resolved PM from two urban sites in central and southern Europe, i.e. Mainz (MZ), Germany, and Thessaloniki (TK), Greece. The total concentration of 11 NMAHs (∑11NMAH concentrations) measured in PM10 and total PM were 0.51–8.38 and 12.1–72.1 ng m−3 at the MZ and TK sites, respectively, whereas ∑7OPAHs were 47–1636 and 858–4306 pg m−3, and ∑8NPAHs were ≤90 and 76–578 pg m−3, respectively. NMAHs contributed 0.4 % and 1.8 % to the HULIS mass at MZ and TK, respectively. The mass size distributions of the individual substances generally peaked in the smallest or second smallest size fraction i.e. 〈0.49 or 0.49–0.95 µm. The mass median diameter (MMD) of NMAHs was 0.10 and 0.27 µm at MZ and TK, respectively, while the MMDs of NPAHs and OPAHs were both 0.06 µm at MZ and 0.12 and 0.10 µm at TK. Correlation analysis between NMAHs, NPAHs, and OPAHs from one side and WSOC, HULIS, sulfate, and potassium from the other suggested that fresh biomass burning (BB) and fossil fuel combustion emissions dominated at the TK site, while aged air masses were predominant at the MZ site.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 14 ( 2022-07-29), p. 4385-4406
    Abstract: Abstract. A combination of online and offline mass spectrometric techniques was used to characterize the chemical composition of secondary organic aerosol (SOA) generated from the photooxidation of α-pinene in an atmospheric simulation chamber. The filter inlet for gases and aerosols (FIGAERO) coupled with a high-resolution time-of-flight iodide chemical ionization mass spectrometer (I−-ToF-CIMS) was employed to track the evolution of gaseous and particulate components. Extracts of aerosol particles sampled onto a filter at the end of each experiment were analysed using ultra-performance liquid chromatography ultra-high-resolution tandem mass spectrometry (LC-Orbitrap MS). Each technique was used to investigate the major SOA elemental group contributions in each system. The online CIMS particle-phase measurements show that organic species containing exclusively carbon, hydrogen, and oxygen (CHO group) dominate the contribution to the ion signals from the SOA products, broadly consistent with the LC-Orbitrap MS negative mode analysis, which was better able to identify the sulfur-containing fraction. An increased abundance of high-carbon-number (nC≥16) compounds additionally containing nitrogen (CHON group) was detected in the LC-Orbitrap MS positive ionization mode, indicating a fraction missed by the negative-mode and CIMS measurements. Time series of gas-phase and particle-phase oxidation products provided by online measurements allowed investigation of the gas-phase chemistry of those products by hierarchical clustering analysis to assess the phase partitioning of individual molecular compositions. The particle-phase clustering was used to inform the selection of components for targeted structural analysis of the offline samples. Saturation concentrations derived from nearly simultaneous gaseous and particulate measurements of the same ions by FIGAERO-CIMS were compared with those estimated from the molecular structure based on the LC-Orbitrap MS measurements to interpret the component partitioning behaviour. This paper explores the insight brought to the interpretation of SOA chemical composition by the combined application of online FIGAERO-CIMS and offline LC-Orbitrap MS analytical techniques.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 6 ( 2022-03-31), p. 4149-4166
    Abstract: Abstract. To better understand the chemical controls of sub- and super-saturated aerosol water uptake, we designed and conducted a series of chamber experiments to investigate the evolution of secondary organic aerosol (SOA) particle physicochemical properties during photo-oxidation of single and mixed biogenic (α-pinene, isoprene) and anthropogenic (o-cresol) volatile organic compounds (VOCs) in the presence of ammonium sulfate seeds. During the 6 h experiments, the cloud condensation nuclei (CCN) activity at super-saturation of water (0.1 %–0.5 %), hygroscopic growth factor at 90 % relative humidity (RH), and non-refractory PM1 chemical composition were recorded concurrently. Attempts to use the hygroscopicity parameter κ to reconcile water uptake ability below and above water saturation from various VOC precursor systems were made, aiming to predict the CCN activity from the sub-saturated hygroscopicity. The thermodynamic model AIOMFAC (aerosol inorganic-organic mixtures functional groups activity coefficients) was used to simulate κ values of model compound mixtures to compare with the observation and to isolate the controlling factors of water uptake at different RHs. The sub- and super-saturated water uptake (in terms of both κHTDMA and κCCN) were mainly controlled by the SOA mass fraction, which depended on the SOA production rate of the precursors, and the SOA composition played a second-order role. For the reconciliation of κHTDMA and κCCN, the κHTDMA/κCCN ratio increased with the SOA mass fraction and this was observed in all investigated single and mixed VOC systems, independent of initial VOC concentrations and sources. For all VOC systems, the mean κHTDMA of aerosol particles was ∼25 % lower than the κCCN at the beginning of the experiments with inorganic seeds. With the increase of condensed SOA on inorganic seed particles throughout the experiments, the discrepancy of κHTDMA and κCCN became weaker (down to ∼0 %) and finally the mean κHTDMA was ∼60 % higher than κCCN on average when the SOA mass fraction approached ∼0.8. As indicated by AIOMFAC model simulations, non-ideality alone cannot fully explain the κ discrepancy at high SOA mass fraction (0.8). A good agreement in κCCN between model and observation was achieved by doubling the molecular weight of the model compounds or by reducing the dry particle size in the CCN counter. This indicates that the evaporation of semi-volatile organics in the CCN counter together with non-ideality could have led to the observed κ discrepancy. As a result, the predicted CCN number concentrations from the κHTDMA and particle number size distribution were ∼10 % lower than CCN counter measurement on average at the beginning, and further even turned to an overestimation of ∼20 % on average when the SOA mass fraction was ∼0.8. This chemical composition-dependent performances of the κ-Köhler approach on CCN prediction can introduce a variable uncertainty in predicting cloud droplet numbers from the sub-saturated water uptake, the influence of which on models still needs to be investigated.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 20 ( 2022-10-21), p. 13677-13693
    Abstract: Abstract. In this study, we investigate the influence of isoprene on the volatility of secondary organic aerosol (SOA) formed during the photo-oxidation of mixtures of anthropogenic and biogenic precursors. The SOA particle volatility was quantified using two independent experimental techniques (using a thermal denuder and the Filter Inlet for Gas and Aerosols iodide high-resolution time-of-flight Chemical Ionisation Mass Spectrometer – FIGAERO-CIMS) in mixtures of α-pinene/isoprene, o-cresol/isoprene, and α-pinene/o-cresol/isoprene. Single-precursor experiments at various initial concentrations and results from previous α-pinene/o-cresol experiments were used as a reference. The oxidation of isoprene did not result in the formation of detectable SOA particle mass in single-precursor experiments. However, isoprene-derived products were identified in the mixed systems, likely due to the increase in the total absorptive mass. The addition of isoprene resulted in mixture-dependent influence on the SOA particle volatility. Isoprene made no major change to the volatility of α-pinene SOA particles, though changes in the SOA particle composition were observed and the volatility was reasonably predicted based on the additivity. Isoprene addition increased o-cresol SOA particle volatility by ∼5/15 % of the total mass/signal, respectively, indicating a potential to increase the overall volatility that cannot be predicted based on the additivity. The addition of isoprene to the α-pinene/o-cresol system (i.e. α-pinene/o-cresol/isoprene) resulted in slightly fewer volatile particles than those measured in the α-pinene/o-cresol systems. The measured volatility in the α-pinene/o-cresol/isoprene system had an ∼6 % higher low volatile organic compound (LVOC) mass/signal compared to that predicted assuming additivity with a correspondingly lower semi-volatile organic compound (SVOC) fraction. This suggests that any effects that could increase the SOA volatility from the addition of isoprene are likely outweighed by the formation of lower-volatility compounds in more complex anthropogenic–biogenic precursor mixtures. Detailed chemical composition measurements support the measured volatility distribution changes and showed an abundance of unique-to-the-mixture products appearing in all the mixed systems accounting for around 30 %–40 % of the total particle-phase signal. Our results demonstrate that the SOA particle volatility and its prediction can be affected by the interactions of the oxidized products in mixed-precursor systems, and further mechanistic understanding is required to improve their representation in chemical transport models.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Human Hypertension, Springer Science and Business Media LLC, Vol. 37, No. 6 ( 2022-07-14), p. 449-454
    Abstract: The HYPEDIA study aimed at evaluating the implementation of the 2018 European guidelines for treating hypertension in primary care. A nationwide prospective non-interventional cross-sectional study was performed in consecutive untreated or treated hypertensives recruited mainly in primary care in Greece. Participants’ characteristics, office blood pressure (BP) (triplicate automated measurements, Microlife BPA3 PC) and treatment changes were recorded on a cloud platform. A total of 3,122 patients (mean age 64 ± 12.5 [SD] years, 52% males) were assessed by 181 doctors and 3 hospital centers. In 772 untreated hypertensives (25%), drug treatment was initiated in the majority, with monotherapy in 53.4%, two-drug combination in 36.3%, and three drugs in 10.3%. Angiotensin receptor blocker (ARB) monotherapy was initiated in 30%, ARB/calcium channel blocker (CCB) 20%, ARB/thiazide 8%, angiotensin converting enzyme inhibitor (ACEi)-based 19%. Of the combinations used, 97% were in single-pill. Among 977 treated hypertensives aged 〈 65 years, 79% had BP ≥ 130/80 mmHg (systolic and/or diastolic), whereas among 1,373 aged ≥65 years, 66% had BP ≥ 140/80 mmHg. ARBs were used in 69% of treated hypertensives, CCBs 47%, ACEis 19%, diuretics 39%, beta-blockers 19%. Treatment modification was decided in 53% of treated hypertensives aged 〈 65 years with BP ≥ 130/80 mmHg and in 62% of those ≥65 years with BP ≥ 140/80 mmHg. Renin-angiotensin system blocker-based therapy constitutes the basis of antihypertensive drug treatment in most patients in primary care, with wide use of single-pill combinations. In almost half of treated uncontrolled hypertensives, treatment was not intensified, suggesting suboptimal implementation of the guidelines and possible physician inertia.
    Type of Medium: Online Resource
    ISSN: 1476-5527
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2006792-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Environmental Science and Pollution Research Vol. 28, No. 42 ( 2021-11), p. 59091-59104
    In: Environmental Science and Pollution Research, Springer Science and Business Media LLC, Vol. 28, No. 42 ( 2021-11), p. 59091-59104
    Type of Medium: Online Resource
    ISSN: 0944-1344 , 1614-7499
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2014192-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Environmental Science and Pollution Research Vol. 24, No. 3 ( 2017-1), p. 3027-3037
    In: Environmental Science and Pollution Research, Springer Science and Business Media LLC, Vol. 24, No. 3 ( 2017-1), p. 3027-3037
    Type of Medium: Online Resource
    ISSN: 0944-1344 , 1614-7499
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2014192-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2014
    In:  Environ. Sci.: Processes Impacts Vol. 16, No. 6 ( 2014), p. 1489-1494
    In: Environ. Sci.: Processes Impacts, Royal Society of Chemistry (RSC), Vol. 16, No. 6 ( 2014), p. 1489-1494
    Type of Medium: Online Resource
    ISSN: 2050-7887 , 2050-7895
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2014
    detail.hit.zdb_id: 2703791-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 128, No. 16 ( 2023-08-27)
    Abstract: Refractive indices of BC/BrC were derived without multiple charge artifacts A single RI may be sufficient for simulating the radiative forcing of secondary organic aerosol particles at the wavelength of 660 nm Considering morphology may be necessary for accurate predictions of the absorption of coated BC particles
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...