GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Reviews of Geophysics, American Geophysical Union (AGU), Vol. 57, No. 2 ( 2019-06), p. 250-280
    Abstract: Model hierarchies help address open research questions; we focus on how they have improved our understanding of atmospheric circulation Model hierarchies are commonly referred to but remain poorly defined; we identify three principles to organize models into hierarchies Key benchmark models of the atmospheric circulation are identified and connected to comprehensive models through model hierarchies
    Type of Medium: Online Resource
    ISSN: 8755-1209 , 1944-9208
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2035391-1
    detail.hit.zdb_id: 209852-0
    detail.hit.zdb_id: 209853-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Journal of Geophysical Research: Atmospheres Vol. 118, No. 12 ( 2013-06-27), p. 6017-6027
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 118, No. 12 ( 2013-06-27), p. 6017-6027
    Type of Medium: Online Resource
    ISSN: 2169-897X
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 7 ( 2020-04-01), p. 2853-2870
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 7 ( 2020-04-01), p. 2853-2870
    Abstract: The Tropical Rain Belts with an Annual Cycle and Continent Model Intercomparison Project (TRACMIP) ensemble—a multimodel ensemble of slab-ocean simulations in idealized configurations—provides a test of the relationship between the zonal mean ITCZ and the cross-equatorial atmospheric energy transports (AHT eq ). In a gross sense, the ITCZ position is linearly related to AHT eq , as expected from the energetic framework. Yet, in many aspects, the TRACMIP model simulations do not conform to the framework. Throughout the annual cycle there are large excursions in the ITCZ position unrelated to changes in the AHT eq and, conversely, substantial variations in the magnitude of the AHT eq while the ITCZ is stationary at its northernmost position. Variations both in the net vertical energy input at the ITCZ location and in the vertical profile of ascent play a role in setting the model behavior apart from the conceptual framework. Nevertheless, a linear fit to the ITCZ–AHT eq relationship captures a substantial fraction of the seasonal variations in these quantities as well as the intermodel or across-climate variations in their annual mean values. The slope of the ITCZ–AHT eq linear fit for annual mean changes across simulations with different forcings and configurations varies in magnitude and even sign from model to model and we identify variations in the vertical profile of ascent as a key factor. A simple sea surface temperature–based index avoids the complication of changes in the vertical structure of the atmospheric circulation and provides a more reliable diagnostic for the ITCZ position.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Climate Vol. 35, No. 21 ( 2022-11-01), p. 7057-7076
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 21 ( 2022-11-01), p. 7057-7076
    Abstract: Waterbelt climate states with an ice-free tropical ocean provide a straightforward explanation for the survival of advanced marine species during the Cryogenian glaciations (720–635 million years ago). Previous work revealed that stable waterbelt states require the presence of highly reflective low-level mixed-phase clouds with a high abundance of supercooled liquid in the subtropics. However, the high uncertainty associated with representing mixed-phase clouds in coarse-scale general circulation models (GCMs) that parameterize atmospheric convection has prohibited assessment of whether waterbelt states are a robust feature of Earth’s climate. Here we investigate whether resolving convective-scale motion at length scales of hectometers helps us to assess the plausibility of a waterbelt scenario. First, we show that substantial differences in cloud reflectivity among GCMs do not arise from the resolved atmospheric circulation. Second, we conduct a hierarchy of simulations using the Icosahedral Nonhydrostatic (ICON) modeling framework, ranging from coarse-scale GCM simulations with parameterized convection to large-eddy simulations that explicitly resolve atmospheric convective-scale motions. Our hierarchy of simulations supports the existence of highly reflective subtropical clouds if we apply moderate ice nucleating particle (INP) concentrations. Third, we test the sensitivity of cloud reflectivity to the INP concentration. In the presence of high but justifiable INP concentrations, cloud reflectivity is strongly reduced. Hence, the existence of stable waterbelt states is controlled by the abundance of INPs. We conclude that explicitly resolving convection can help to constrain Cryogenian cloud reflectivity, but limited knowledge concerning Cryogenian aerosol conditions hampers strong constraints. Thus, waterbelt states remain an uncertain feature of Earth’s climate. Significance Statement The purpose of this study is to assess the impact of atmospheric convection and small airborne ice nucleating particles on the reflectivity of mixed-phase clouds over a subtropical ice margin. This is important as these clouds can determine whether the Cryogenian Earth (720–635 million years ago) was in a hard “snowball” state with a fully ice-covered ocean or a habitable waterbelt state with an ice-free tropical ocean. Our results indicate a clear impact of convection but neither confirm nor deny the existence of a waterbelt state since cloud reflectivity depends critically on the abundance of ice nucleating particles. Therefore, a Cryogenian waterbelt scenario remains uncertain, which calls for more comprehensive Earth system modeling approaches in future studies.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Climate Vol. 31, No. 24 ( 2018-12), p. 10013-10020
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 24 ( 2018-12), p. 10013-10020
    Abstract: Recent analyses of global climate models suggest that uncertainty in the coupling between midlatitude clouds and the atmospheric circulation contributes to uncertainty in climate sensitivity. However, the reasons behind model differences in the cloud–circulation coupling have remained unclear. Here, we use a global climate model in an idealized aquaplanet setup to show that the Southern Hemisphere climatological circulation, which in many models is biased equatorward, contributes to the model differences in the cloud–circulation coupling. For the same poleward shift of the Hadley cell (HC) edge, models with narrower climatological HCs exhibit stronger midlatitude cloud-induced shortwave warming than models with wider climatological HCs. This cloud-induced radiative warming results predominantly from a subsidence warming that decreases cloud fraction and is stronger for narrower HCs because of a larger meridional gradient in the vertical velocity. A comparison of our aquaplanet results with comprehensive climate models suggests that about half of the model uncertainty in the midlatitude cloud–circulation coupling stems from this impact of the circulation on the large-scale temperature structure of the atmosphere, and thus could be removed by improving the climatological circulation in models. This illustrates how understanding of large-scale dynamics can help reduce uncertainty in clouds and their response to climate change.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 10 ( 2019-05), p. 3051-3067
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 10 ( 2019-05), p. 3051-3067
    Abstract: Previous work showed that the poleward expansion of the annual-mean zonal-mean atmospheric circulation in response to global warming is strongly modulated by changes in clouds and their radiative heating of the surface and atmosphere. Here, a hierarchy and an ensemble of global climate models are used to study the circulation impact of changes in atmospheric cloud-radiative heating in the absence of changes in sea surface temperature (SST), which is referred to as the atmospheric pathway of the cloud-radiative impact. For the MPI-ESM model, the atmospheric pathway is responsible for about half of the total cloud-radiative impact, and in fact half of the total circulation response. Changes in atmospheric cloud-radiative heating are substantial in both the lower and upper troposphere. However, because SST is prescribed the atmospheric pathway is dominated by changes in upper-tropospheric cloud-radiative heating, which in large part results from the upward shift of high-level clouds. The poleward circulation expansion via the atmospheric pathway and changes in upper-tropospheric cloud-radiative heating are qualitatively robust across three global models, yet their magnitudes vary by a factor of 3. A substantial part of these magnitude differences are related to the upper-tropospheric radiative heating by high-level clouds in the present-day climate. A comparison with observations highlights the model deficits in representing the radiative heating by high-level clouds and indicates that reducing these deficits can contribute to improved predictions of regional climate change.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate ( 2021-04-23), p. 1-51
    In: Journal of Climate, American Meteorological Society, ( 2021-04-23), p. 1-51
    Abstract: The Tropical Rain belts with an Annual cycle and Continent Model Intercomparison Project (TRACMIP) ensemble includes slab-ocean aquaplanet controls and experiments with a highly idealized tropical continent: modified aquaplanet grid cells with increased evaporative resistance, increased albedo, reduced heat capacity, and no ocean heat transport (zero Q-flux). In the annual mean, an equatorial cold tongue develops west of the continent and induces dry anomalies and a split in the oceanic ITCZ. Ocean cooling is initiated by advection of cold, dry air from the winter portion of the continent; warm, humid anomalies in the summer portion are restricted to the continent by anomalous surface convergence. The surface energy budget suggests that ocean cooling persists and intensifies because of a positive feedback between a colder surface, drier and colder air, reduced downwelling long wave (LW) flux, and enhanced net surface LW cooling (LW feedback). A feedback between wind, evaporation, and SST (WES feedback) also contributes to the establishment and maintenance of the cold tongue. Simulations with a grayradiation model and simulations that diverge from protocol (with negligible winter cooling) confirm the importance of moist-radiative feedbacks and of rectification effects on the seasonal cycle. This mechanism coupling the continental and oceanic climate might be relevant to the double ITCZ bias. The key role of the LW feedback suggests that the study of interactions between monsoons and oceanic ITCZs requires full-physics models and a hierarchy of land models that considers evaporative processes alongside heat capacity as a defining characteristic of land.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Geophysical Research Letters Vol. 40, No. 22 ( 2013-11-28), p. 5944-5948
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 40, No. 22 ( 2013-11-28), p. 5944-5948
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2014
    In:  Geophysical Research Letters Vol. 41, No. 12 ( 2014-06-28), p. 4308-4315
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 41, No. 12 ( 2014-06-28), p. 4308-4315
    Abstract: Radiative impact of clouds on ITCZ shift studied in climate models Model spread in clouds is a dominant source for spread in ITCZ shift Tuning the dependence of tropical clouds on circulation could reduce spread
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    IOP Publishing ; 2021
    In:  Environmental Research Letters Vol. 16, No. 8 ( 2021-08-01), p. 084041-
    In: Environmental Research Letters, IOP Publishing, Vol. 16, No. 8 ( 2021-08-01), p. 084041-
    Abstract: The North Atlantic jet stream is projected to extend eastward towards Europe in boreal winter in response to climate change. We show that this response is robust across a hierarchy of climate models and climate change scenarios. We further show that cloud-radiative changes contribute robustly to the eastward extension of the jet stream in three atmosphere models, but lead to model uncertainties in the jet stream response over the North Atlantic. The magnitude of the cloud contribution depends on the model, consistent with differences in the magnitude of changes in upper-tropospheric cloud-radiative heating. We further study the role of regional cloud changes in one of the three atmosphere models, i.e. the ICON model. Tropical cloud-radiative changes dominate the cloud impact on the eastward extension of the jet stream in ICON. Cloud-radiative changes over the Indian Ocean, western tropical Pacific, and eastern tropical Pacific contribute to this response, while tropical Atlantic cloud changes have a minor impact. Our results highlight the importance of upper-tropospheric tropical clouds for the regional circulation response to climate change over the North Atlantic-European region and uncertainty therein.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...