GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genes, Chromosomes and Cancer, Wiley, Vol. 53, No. 9 ( 2014-09), p. 788-797
    Abstract: Deletion of 13q14 as the sole abnormality is a good prognostic marker in chronic lymphocytic leukemia (CLL). Nonetheless, the prognostic value of reciprocal 13q14 translocations [t(13q)] with related 13q losses has not been fully elucidated. We described clinical and biological characteristics of 25 CLL patients with t(13q), and compared with 62 patients carrying interstitial del(13q) by conventional G‐banding cytogenetics (CGC) [i‐del(13q)] and 295 patients with del(13q) only detected by fluorescence in situ hybridization (FISH) [F‐del(13q)]. Besides from the CLL FISH panel (D13S319, CEP12, ATM , TP53 ), we studied RB1 deletions in all t(13q) cases and a representative group of i‐del(13q) and F‐del(13q). We analyzed NOTCH1 , SF3B1 , and MYD88 mutations in t(13q) cases by Sanger sequencing. In all, 25 distinct t(13q) were described. All these cases showed D13S319 deletion while 32% also lost RB1 . The median percentage of 13q‐deleted nuclei did not differ from i‐del(13q) patients (73% vs. 64%), but both were significantly higher than F‐del(13q) (52%, P   〈  0.001). Moreover, t(13q) patients showed an increased incidence of biallelic del(13q) (52% vs. 11.3% and 14.9%, P   〈  0.001) and higher rates of concomitant 17p deletion (37.5% vs. 8.6% and 7.2%, P   〈  0.001). RB1 involvement was significantly higher in the i‐del(13q) group (79%, P   〈  0.001). Two t(13q) patients (11.8%) carried NOTCH1 mutations. Time to first treatment in t(13q) and i‐del(13q) was shorter than F‐del(13q) (67, 44, and 137 months, P  = 0.029), and preserved significance in the multivariate analysis. In conclusion, t(13q) and del(13q) patients detected by CGC constitute a subgroup within the 13q‐deleted CLL patients associated with a worse clinical outcome. © 2014 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1045-2257 , 1098-2264
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 1018988-9
    detail.hit.zdb_id: 1492641-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Intensive Care Medicine, Springer Science and Business Media LLC, Vol. 47, No. 2 ( 2021-02), p. 160-169
    Type of Medium: Online Resource
    ISSN: 0342-4642 , 1432-1238
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1459201-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Oncology and Therapy, Springer Science and Business Media LLC, Vol. 7, No. 2 ( 2019-12), p. 131-139
    Type of Medium: Online Resource
    ISSN: 2366-1070 , 2366-1089
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2848647-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Trees, Springer Science and Business Media LLC, Vol. 32, No. 5 ( 2018-10), p. 1335-1346
    Type of Medium: Online Resource
    ISSN: 0931-1890 , 1432-2285
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1463920-8
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Human Reproduction Vol. 37, No. 1 ( 2021-12-27), p. 66-79
    In: Human Reproduction, Oxford University Press (OUP), Vol. 37, No. 1 ( 2021-12-27), p. 66-79
    Abstract: Are relative mitochondrial DNA (mtDNA) content and mitochondrial genome (mtGenome) variants in human cumulus cells (CCs) associated with oocyte reproductive potential and assisted reproductive technology (ART) outcomes? SUMMARY ANSWER Neither the CC mtDNA quantity nor the presence of specific mtDNA genetic variants was associated with ART outcomes, although associations with patient body mass index (BMI) were detected, and the total number of oocytes retrieved differed between major mitochondrial haplogroups. WHAT IS KNOWN ALREADY CCs fulfil a vital role in the support of oocyte developmental competence. As with other cell types, appropriate cellular function is likely to rely upon adequate energy production, which in turn depends on the quantity and genetic competence of the mitochondria. mtDNA mutations can be inherited or they can accumulate in somatic cells over time, potentially contributing to aging. Such mutations may be homoplasmic (affecting all mtDNA in a cell) or they may display varying levels of heteroplasmy (affecting a proportion of the mtDNA). Currently, little is known concerning variation in CC mitochondrial genetics and how this might influence the reproductive potential of the associated oocyte. STUDY DESIGN, SIZE, DURATION This was a prospective observational study involving human CCs collected with 541 oocytes from 177 IVF patients. mtDNA quantity was measured in all the samples with a validated quantitative PCR method and the entire mtGenome was sequenced in a subset of 138 samples using a high-depth massively parallel sequencing approach. Associations between relative mtDNA quantity and mtGenome variants in CCs and patient age, BMI (kg/m2), infertility diagnosis and ART outcomes were investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS Massively parallel sequencing permitted not only the accurate detection of mutations but also the precise quantification of levels of mutations in cases of heteroplasmy. Sequence variants in the mtDNA were evaluated using Mitomaster and HmtVar to predict their potential impact. MAIN RESULTS AND THE ROLE OF CHANCE The relative mtDNA CC content was significantly associated with BMI. No significant associations were observed between CC mtDNA quantity and patient age, female infertility diagnosis or any ART outcome variable. mtGenome sequencing revealed 4181 genetic variants with respect to a reference genome. The COXI locus contained the least number of coding sequence variants, whereas ATPase8 had the most. The number of variants predicted to affect the ATP production differed significantly between mitochondrial macrohaplogroups. The total number of retrieved oocytes was different between the H-V and J-T as well as the U-K and J-T macrohaplogroups. There was a non-significant increase in mtDNA levels in CCs with heteroplasmic mitochondrial mutations. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although a large number of samples were analysed in this study, it was not possible to analyse all the CCs from every patient. Also, the results obtained with respect to specific clinical outcomes and macrohaplogroups should be interpreted with caution due to the smaller sample sizes when subdividing the dataset. WIDER IMPLICATIONS OF THE FINDINGS These findings suggest that the analysis of mtDNA in CCs is unlikely to provide an advantage in terms of improved embryo selection during assisted reproduction cycles. Nonetheless, our data raise interesting biological questions, particularly regarding the interplay of metabolism and BMI and the association of mtDNA haplogroup with oocyte yield in ovarian stimulation cycles. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by National Institutes of Health grant 5R01HD092550-02. D.J.N. and C.R. co-hold patent US20150346100A1 and D.J.N. holds US20170039415A1, both for metabolic imaging methods. D.W. receives support from the NIHR Oxford Biomedical Research Centre. The remaining authors have no conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0268-1161 , 1460-2350
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1484864-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Human Reproduction Vol. 37, No. 3 ( 2022-03-01), p. 411-427
    In: Human Reproduction, Oxford University Press (OUP), Vol. 37, No. 3 ( 2022-03-01), p. 411-427
    Abstract: Can non-invasive metabolic imaging via fluorescence lifetime imaging microscopy (FLIM) detect variations in metabolic profiles between discarded human blastocysts? SUMMARY ANSWER FLIM revealed extensive variations in the metabolic state of discarded human blastocysts associated with blastocyst development over 36 h, the day after fertilization and blastocyst developmental stage, as well as metabolic heterogeneity within individual blastocysts. WHAT IS KNOWN ALREADY Mammalian embryos undergo large changes in metabolism over the course of preimplantation development. Embryo metabolism has long been linked to embryo viability, suggesting its potential utility in ART to aid in selecting high quality embryos. However, the metabolism of human embryos remains poorly characterized due to a lack of non-invasive methods to measure their metabolic state. STUDY DESIGN, SIZE, DURATION We conducted a prospective observational study. We used 215 morphologically normal human embryos from 137 patients that were discarded and donated for research under an approved institutional review board protocol. These embryos were imaged using metabolic imaging via FLIM to measure the autofluorescence of two central coenzymes, nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD+), which are essential for cellular respiration and glycolysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Here, we used non-invasive FLIM to measure the metabolic state of human blastocysts. We first studied spatial patterns in the metabolic state within human blastocysts and the association of the metabolic state of the whole blastocysts with stage of expansion, day of development since fertilization and morphology. We explored the sensitivity of this technique in detecting metabolic variations between blastocysts from the same patient and between patients. Next, we explored whether FLIM can quantitatively measure metabolic changes through human blastocyst expansion and hatching via time-lapse imaging. For all test conditions, the level of significance was set at P  & lt; 0.05 after correction for multiple comparisons using Benjamini–Hochberg’s false discovery rate. MAIN RESULTS AND THE ROLE OF CHANCE We found that FLIM is sensitive enough to detect significant metabolic differences between blastocysts. We found that metabolic variations between blastocyst are partially explained by both the time since fertilization and their developmental expansion stage (P  & lt; 0.05), but not their morphological grade. Substantial metabolic variations between blastocysts from the same patients remain, even after controlling for these factors. We also observe significant metabolic heterogeneity within individual blastocysts, including between the inner cell mass and the trophectoderm, and between the portions of hatching blastocysts within and without the zona pellucida (P  & lt; 0.05). And finally, we observed that the metabolic state of human blastocysts continuously varies over time. LIMITATIONS, REASONS FOR CAUTION Although we observed significant variations in metabolic parameters, our data are taken from human blastocysts that were discarded and donated for research and we do not know their clinical outcome. Moreover, the embryos used in this study are a mixture of aneuploid, euploid and embryos of unknown ploidy. WIDER IMPLICATIONS OF THE FINDINGS This work reveals novel aspects of the metabolism of human blastocysts and suggests that FLIM is a promising approach to assess embryo viability through non-invasive, quantitative measurements of their metabolism. These results further demonstrate that FLIM can provide biologically relevant information that may be valuable for the assessment of embryo quality. STUDY FUNDING/COMPETING INTEREST(S) Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University. Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. is an inventor on patent US20170039415A1. TRIAL REGISTRATION NUMBER N/A.
    Type of Medium: Online Resource
    ISSN: 0268-1161 , 1460-2350
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1484864-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Human Reproduction Vol. 34, No. 12 ( 2019-12-01), p. 2349-2361
    In: Human Reproduction, Oxford University Press (OUP), Vol. 34, No. 12 ( 2019-12-01), p. 2349-2361
    Abstract: Is the combined use of fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging and second harmonic generation (SHG) spindle imaging a feasible and safe approach for noninvasive embryo assessment? SUMMARY ANSWER Metabolic imaging can sensitively detect meaningful metabolic changes in embryos, SHG produces high-quality images of spindles and the methods do not significantly impair embryo viability. WHAT IS KNOWN ALREADY Proper metabolism is essential for embryo viability. Metabolic imaging is a well-tested method for measuring metabolism of cells and tissues, but it is unclear if it is sensitive enough and safe enough for use in embryo assessment. STUDY DESIGN, SIZE, DURATION This study consisted of time-course experiments and control versus treatment experiments. We monitored the metabolism of 25 mouse oocytes with a noninvasive metabolic imaging system while exposing them to oxamate (cytoplasmic lactate dehydrogenase inhibitor) and rotenone (mitochondrial oxidative phosphorylation inhibitor) in series. Mouse embryos (n = 39) were measured every 2 h from the one-cell stage to blastocyst in order to characterize metabolic changes occurring during pre-implantation development. To assess the safety of FLIM illumination, n = 144 illuminated embryos were implanted into n = 12 mice, and n = 108 nonilluminated embryos were implanted into n = 9 mice. PARTICIPANTS/MATERIALS, SETTING, METHODS Experiments were performed in mouse embryos and oocytes. Samples were monitored with noninvasive, FLIM-based metabolic imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) autofluorescence. Between NADH cytoplasm, NADH mitochondria and FAD mitochondria, a single metabolic measurement produces up to 12 quantitative parameters for characterizing the metabolic state of an embryo. For safety experiments, live birth rates and pup weights (mean ± SEM) were used as endpoints. For all test conditions, the level of significance was set at P  & lt; 0.05. MAIN RESULTS AND THE ROLE OF CHANCE Measured FLIM parameters were highly sensitive to metabolic changes due to both metabolic perturbations and embryo development. For oocytes, metabolic parameter values were compared before and after exposure to oxamate and rotenone. The metabolic measurements provided a basis for complete separation of the data sets. For embryos, metabolic parameter values were compared between the first division and morula stages, morula and blastocyst and first division and blastocyst. The metabolic measurements again completely separated the data sets. Exposure of embryos to excessive illumination dosages (24 measurements) had no significant effect on live birth rate (5.1 ± 0.94 pups/mouse for illuminated group; 5.7 ± 1.74 pups/mouse for control group) or pup weights (1.88 ± 0.10 g for illuminated group; 1.89 ± 0.11 g for control group). LIMITATIONS, REASONS FOR CAUTION The study was performed using a mouse model, so conclusions concerning sensitivity and safety may not generalize to human embryos. A limitation of the live birth data is also that although cages were routinely monitored, we could not preclude that some runt pups may have been eaten. WIDER IMPLICATIONS OF THE FINDINGS Promising proof-of-concept results demonstrate that FLIM with SHG provide detailed biological information that may be valuable for the assessment of embryo and oocyte quality. Live birth experiments support the method’s safety, arguing for further studies of the clinical utility of these techniques. STUDY FUNDING/COMPETING INTEREST(S) Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University and by the Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Institutes of Health Award UL1 TR001102), by NSF grants DMR-0820484 and PFI-TT-1827309 and by NIH grant R01HD092550-01. T.S. was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology grant (1308878). S.F. and S.A. were supported by NSF MRSEC DMR-1420382. Becker and Hickl GmbH sponsored the research with the loaning of equipment for FLIM. T.S. and D.N. are cofounders and shareholders of LuminOva, Inc., and co-hold patents (US20150346100A1 and US20170039415A1) for metabolic imaging methods. D.S. is on the scientific advisory board for Cooper Surgical and has stock options with LuminOva, Inc.
    Type of Medium: Online Resource
    ISSN: 0268-1161 , 1460-2350
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 1484864-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Human Reproduction, Oxford University Press (OUP), Vol. 37, No. 3 ( 2022-03-01), p. 400-410
    Abstract: Can non-invasive imaging with fluorescence lifetime imaging microscopy (FLIM) detect metabolic differences in euploid versus aneuploid human blastocysts? SUMMARY ANSWER FLIM has identified significant metabolic differences between euploid and aneuploid blastocysts. WHAT IS KNOWN ALREADY Prior studies have demonstrated that FLIM can detect metabolic differences in mouse oocytes and embryos and in discarded human blastocysts. STUDY DESIGN, SIZE, DURATION This was a prospective observational study from August 2019 to February 2020. Embryo metabolic state was assessed using FLIM to measure the autofluorescence metabolic factors nicotinamide adenine dinucleotide dehydrogenase together with nicotinamide adenine phosphate dinucleotide dehydrogenase (NAD(P)H) and flavin adenine dinucleotide (FAD). Eight metabolic FLIM parameters were obtained from each blastocyst (four for NAD(P)H and four for FAD): short (T1) and long (T2) fluorescence lifetime, fluorescence intensity (I) and fraction of the molecules engaged with enzymes (F). The redox ratio (NAD(P)H-I)/(FAD-I) was also calculated for each image. PARTICIPANTS/MATERIALS, SETTING, METHODS This study was performed at a single academically affiliated centre where there were 156 discarded frozen blastocysts (n = 17 euploids; 139 aneuploids) included. Ploidy status was determined by pre-implantation genetic testing for aneuploidy (PGT-A). Discarded human blastocysts were compared using single FLIM parameters. Additionally, inner cell mass (ICM) and trophectoderm (TE) were also evaluated. Multilevel models were used for analysis. A post-hoc correction used Benjamini–Hochberg’s false discovery rate, at a q-value of 0.05. MAIN RESULTS AND THE ROLE OF CHANCE Comparing euploid (n = 17) versus aneuploid (n = 139) embryos, a significant difference was seen in NAD(P)H-F (P & lt; 0.04), FAD-I (P & lt; 0.04) and redox ratio (P & lt; 0.05). Euploid ICM (n = 15) versus aneuploid ICM (n = 119) also demonstrated significantly different signatures in NAD(P)H-F (P & lt; 0.009), FAD-I (P & lt; 0.03) and redox ratio (P & lt; 0.03). Similarly, euploid TE (n = 15) versus aneuploid TE (n = 119) had significant differences in NAD(P)H-F (P & lt; 0.0001) and FAD-I (P & lt; 0.04). LIMITATIONS, REASONS FOR CAUTION This study utilized discarded human blastocysts, and these embryos may differ metabolically from non-discarded human embryos. The blastocysts analysed were vitrified after PGT-A biopsy and it is unclear how the vitrification process may affect the metabolic profile of blastocysts. Our study was also limited by the small number of rare donated euploid embryos available for analysis. Euploid embryos are very rarely discarded due to their value to patients trying to conceive, which limits their use for research purposes. However, we controlled for the imbalance with the bootstrap resampling analysis. WIDER IMPLICATIONS OF THE FINDINGS These findings provide preliminary evidence that FLIM may be a useful non-invasive clinical tool to assist in identifying the ploidy status of embryos. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by the Blavatnik Biomedical Accelerator Grant at Harvard University. Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. is an inventor on patent US20170039415A1. There are no other conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A
    Type of Medium: Online Resource
    ISSN: 0268-1161 , 1460-2350
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1484864-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Fertility and Sterility, Elsevier BV, Vol. 114, No. 3 ( 2020-09), p. e358-
    Type of Medium: Online Resource
    ISSN: 0015-0282
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1500469-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Fertility and Sterility Vol. 114, No. 3 ( 2020-09), p. e33-e34
    In: Fertility and Sterility, Elsevier BV, Vol. 114, No. 3 ( 2020-09), p. e33-e34
    Type of Medium: Online Resource
    ISSN: 0015-0282
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1500469-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...