GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: EPJ Web of Conferences, EDP Sciences, Vol. 237 ( 2020), p. 05008-
    Abstract: LALINET (Latin American Lidar Network) follows its goal to consolidation as a federative lidar network to provide regional coverage over Latin America in providing aerosol and greenhouse gas profiles following QA/QC protocols and promoting the development of researchers and students in atmopheric science field. We show recent results on different approaches for studying the optical properties of the atmosphere regarding aerosols at tropospheric and stratospheric level and greenhouse gas mixing ratio profiles followed by our recent support and validation efforts towards present and future satellite missions.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Eos Vol. 100 ( 2019-02-27)
    In: Eos, American Geophysical Union (AGU), Vol. 100 ( 2019-02-27)
    Abstract: Workshop for Thirtieth Anniversary of the Grupo de �ptica Atmosf�rica de Camag�ey; Camag�ey, Cuba, 23–26 October 2018
    Type of Medium: Online Resource
    ISSN: 2324-9250
    Language: Unknown
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Climatology, Wiley, Vol. 38, No. 3 ( 2018-03), p. 1216-1233
    Abstract: In this research, we compare 2‐m air temperature from the ERA‐Interim reanalysis of the European Centre for Medium‐Range Weather Forecasting with 2‐m air temperature weather station observations in Cuba, with the goal of evaluating the behaviour and uncertainties of the ERA‐Interim data set with respect to station‐based observations. Three interpolation methods are used to determine 2‐m temperatures from the ERA‐Interim data set at the station locations. The differences were analysed utilizing root mean square error (RMSE), mean absolute error (MAE) and bias. The comparison was conducted for daily, monthly and annual time scales, and for the rainy (May–October) and less rainy (November–April) seasons. The best interpolation method is the mean of four grid points method. We find a warm bias in the ERA‐Interim reanalysis for most Cuban stations. The smallest differences are at 1800 UTC and the largest differences are at 1200 UTC. All differences are greater than 0.3 K, although many of the stations show differences in the range of 1.5–2.0 K. In some stations the differences are greater than 5.0 K. At the daily scale more than 50% of the stations show significant differences at the 95% confidence level. The differences are caused by the altitude difference between the stations and the nearest grid point of ERA‐Interim, the land‐sea mask of ERA‐Interim and the station location respect to this mask, and by local processes, such as a local breeze. At the monthly scale there are fewer stations with significant differences than for the other time scales. The ERA‐Interim reanalysis better represents the surface 2‐m temperature for coastal stations than for inland stations. Years with moderate and strong El Niño or La Niña show significant differences between ERA‐Interim and observations. The amplitude between the maximum bias and the minimum bias is greater in those years.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Earth System Science Data, Copernicus GmbH, Vol. 13, No. 9 ( 2021-09-08), p. 4407-4423
    Abstract: Abstract. We report the recovery and processing methodology of the first ever multi-year lidar dataset of the stratospheric aerosol layer. A Q-switched ruby lidar measured 66 vertical profiles of 694 nm attenuated backscatter at Lexington, Massachusetts, between January 1964 and August 1965, with an additional nine profile measurements conducted from College, Alaska, during July and August 1964. We describe the processing of the recovered lidar backscattering ratio profiles to produce mid-visible (532 nm) stratospheric aerosol extinction profiles (sAEP532) and stratospheric aerosol optical depth (sAOD532) measurements, utilizing a number of contemporary measurements of several different atmospheric variables. Stratospheric soundings of temperature and pressure generate an accurate local molecular backscattering profile, with nearby ozone soundings determining the ozone absorption, which are used to correct for two-way ozone transmittance. Two-way aerosol transmittance corrections are also applied based on nearby observations of total aerosol optical depth (across the troposphere and stratosphere) from sun photometer measurements. We show that accounting for these two-way transmittance effects substantially increases the magnitude of the 1964/1965 stratospheric aerosol layer's optical thickness in the Northern Hemisphere mid-latitudes, then ∼ 50 % larger than represented in the Coupled Model Intercomparison Project 6 (CMIP6) volcanic forcing dataset. Compared to the uncorrected dataset, the combined transmittance correction increases the sAOD532 by up to 66 % for Lexington and up to 27 % for Fairbanks, as well as individual sAEP532 adjustments of similar magnitude. Comparisons with the few contemporary measurements available show better agreement with the corrected two-way transmittance values. Within the January 1964 to August 1965 measurement time span, the corrected Lexington sAOD532 time series is substantially above 0.05 in three distinct periods, October 1964, March 1965, and May–June 1965, whereas the 6 nights the lidar measured in December 1964 and January 1965 had sAOD values of at most ∼ 0.03. The comparison with interactive stratospheric aerosol model simulations of the Agung aerosol cloud shows that, although substantial variation in mid-latitude sAOD532 are expected from the seasonal cycle in the stratospheric circulation, the Agung cloud's dispersion from the tropics would have been at its strongest in winter and weakest in summer. The increasing trend in sAOD from January to July 1965, also considering the large variability, suggests that the observed variations are from a different source than Agung, possibly from one or both of the two eruptions that occurred in 1964/1965 with a Volcanic Explosivity Index (VEI) of 3: Trident, Alaska, and Vestmannaeyjar, Heimaey, south of Iceland. A detailed error analysis of the uncertainties in each of the variables involved in the processing chain was conducted. Relative errors for the uncorrected sAEP532 were 54 % for Fairbanks and 44 % Lexington. For the corrected sAEP532 the errors were 61 % and 64 %, respectively. The analysis of the uncertainties identified variables that with additional data recovery and reprocessing could reduce these relative error levels. Data described in this work are available at https://doi.org/10.1594/PANGAEA.922105 (Antuña-Marrero et al., 2020a).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 61, No. 4 ( 2022-04), p. 369-391
    Abstract: We present a climatological study of aerosols in four representative Caribbean Sea islands that is based on daily mean values of aerosol optical properties for the period 2008–16, using the aerosol optical depth (AOD) and Ångström exponent (AE) to classify the dominant aerosol type. A climatological assessment of the spatiotemporal distribution of the main aerosol types, their links with synoptic patterns, and the transport from different sources is provided. Maximum values of AOD occur in the rainy season, coinciding with the minimum in AE and an increased occurrence of dust, whereas the minimum of AOD occurs in the dry season, due to the predominance of marine aerosols. Marine and dust aerosol are more frequent in the easternmost islands and decrease westward because of an increase of continental and mixture dust aerosols. Therefore, the westernmost station displays the most heterogeneous composition of aerosols. Using a weather-type classification, we identify a quantifiable influence of the atmospheric circulation in the distribution of Caribbean aerosols. However, they can occur under relatively weak and/or diverse synoptic patterns, typically involving transient systems and specific configurations of the Azores high that depend on the considered station. Backward trajectories indicate that dry-season marine aerosols and rainy-season dust are transported by air parcels traveling within the tropical easterly winds. The main source region for both types of aerosols is the subtropical eastern Atlantic Ocean, except for Cuba, where the largest contributor to dry-season marine aerosols is the subtropical western Atlantic. Different aerosol types follow similar pathways, suggesting a key role of emission sources in determining the spatiotemporal distribution of Caribbean aerosols.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...