GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Science Data, Copernicus GmbH, Vol. 16, No. 3 ( 2024-03-11), p. 1229-1246
    Abstract: Abstract. Spatial soil databases can help model complex phenomena in which soils are a decisive factor – for example, evaluating agricultural potential or estimating carbon storage capacity. The Latin America and Caribbean Soil Information System, SISLAC, is a regional initiative promoted by the Food and Agriculture Organization's (FAO) Latin America and the Caribbean Soil Partnership to contribute to sustainable management of soil. SISLAC includes data from 49 084 soil profiles distributed unevenly across the continent, making it the region's largest soil database. In addition, there are other soil databases in the region with about 40 000 soil profiles that can be integrated into SISLAC and improve it. However, some problems hinder its usages, such as the quality of the data and their high dimensionality. The objective of this research is evaluate the quality of the SISLAC data and the other available soil databases to generate a new improved version that meets the minimum quality requirements to be used for different purposes or practical applications. The results show that 15 % of the existing soil profiles had an inaccurate description of the diagnostic horizons and 17 % of the additional profiles already existed in SISLAC; therefore, a total of 32 % of profiles were excluded for these two reasons. Further correction of an additional 4.5 % of existing inconsistencies improved overall data quality. The improved database consists of 66 746 profiles and is available for public use at https://doi.org/10.5281/zenodo.7876731 (Díaz-Guadarrama and Guevara, 2023). This revised version of SISLAC data offers the opportunity to generate information that helps decision-making on issues in which soils are a decisive factor. It can also be used to plan future soil surveys in areas with low density or where updated information is required.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2024
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geoderma, Elsevier BV, Vol. 354 ( 2019-11), p. 113793-
    Type of Medium: Online Resource
    ISSN: 0016-7061
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 281080-3
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Innovation Geoscience, Innovation Press Co., Limited, Vol. 1, No. 1 ( 2023), p. 100015-
    Abstract: 〈p〉The sustainability of life on Earth is under increasing threat due to human-induced climate change. This perilous change in the Earth's climate is caused by increases in carbon dioxide and other greenhouse gases in the atmosphere, primarily due to emissions associated with burning fossil fuels. Over the next two to three decades, the effects of climate change, such as heatwaves, wildfires, droughts, storms, and floods, are expected to worsen, posing greater risks to human health and global stability. These trends call for the implementation of mitigation and adaptation strategies. Pollution and environmental degradation exacerbate existing problems and make people and nature more susceptible to the effects of climate change. In this review, we examine the current state of global climate change from different perspectives. We summarize evidence of climate change in Earth��s spheres, discuss emission pathways and drivers of climate change, and analyze the impact of climate change on environmental and human health. We also explore strategies for climate change mitigation and adaptation and highlight key challenges for reversing and adapting to global climate change.〈/p〉
    Type of Medium: Online Resource
    ISSN: 2959-8753
    Language: Unknown
    Publisher: Innovation Press Co., Limited
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 14, No. 22 ( 2022-11-11), p. 5711-
    Abstract: Soil texture has a great influence on the physical–hydric and chemical behavior of soils. In the Amazon regions, due to the presence of dense forest cover and limited access to roads, carrying out surveys and mapping of soils is challenging. When data exist, they are relatively sparse and the distribution is quite uneven. In this context, machine learning algorithms (ML) associated with remote sensor covariates offer a framework to derive digital maps of soil attributes. The objective of this study was to produce maps of surface and subsurface soil clay, silt, and sand contents in a 13.440 km2 area in the Amazon. The specific objectives were to (a) evaluate the gain in prediction accuracy when using the P-band of airborne radar as a covariate; (b) evaluate two sampling approaches (Reference Area—RA and Total Area—TA); and (c) evaluate the transferability and performance of three ML algorithms: regression tree (RT), random forest (RF), and support vector machine (SVM). The study site was divided into three blocks, called Urucu, Araracanga, and Juruá, respectively. The soil dataset consisted of 151 surface and subsurface sand, silt, and clay observations and 21 covariates (20 relief variables and the backscattering coefficient from the P-band). Both the RA and TA sampling approach used 114 observations for training the prediction models (75%) and 37 for validation (25%). The RA approach was better for the development of sand and silt models. Overall, RF derived the most accurate predictions for all variables. The effect of introducing the P-band backscattering coefficient improved the sand prediction accuracy at the surface and subsurface in Araracanga, which had the highest sand content, with relative improvements (RI) of the R2, root mean square error (RMSE), and mean absolute error (MAE) of 46%, 3%, and 4% at the surface, respectively, and 66.7%, 4.4%, and 5.2% at the subsurface, respectively. For silt, the P-band improved the predictions at the surface in Araracanga, which had the lowest silt contents among the blocks. For clay, adding the P-band improved the RF predictions at the subsurface, with RI of the R2, RMSE, and MAE of 29%, 5%, and 5%, respectively. Despite the low observation density, inherently hindered by the low accessibility of the area and high costs of sampling thereof, the results showed the potential of ML algorithms boosted by airborne radar P-band to map soil clay, silt, and sand contents in the Amazon.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Soil Systems, MDPI AG, Vol. 4, No. 3 ( 2020-08-21), p. 52-
    Abstract: Mapping soil properties, using geostatistical methods in support of precision agriculture and related activities, requires a large number of samples. To reduce soil sampling and measurement time and cost, a combination of field proximal soil sensors was used to predict and map laboratory-measured soil properties in a 3.4-ha pasture field in southeastern Brazil. Sensor soil properties were measured in situ on a 10 × 10-m dense grid (377 samples) using apparent electrical conductivity meters, apparent magnetic susceptibility meter, gamma-ray spectrometer, water content reflectometer, cone penetrometer, and portable X-ray fluorescence spectrometer (pXRF). Soil samples were collected on a 20 × 20-m thin grid (105 samples) and analyzed in the laboratory for organic C, sum of bases, cation exchange capacity, clay content, soil volumetric moisture, and bulk density. Another 25 samples collected throughout the area were also analyzed for the same soil properties and used for independent validation of models and maps. To test whether the combination of sensors enhances soil property predictions, stepwise multiple linear regression (MLR) models of the laboratory soil properties were derived using individual sensor covariate data versus combined sensor data—except for the pXRF data, which were evaluated separately. Then, to test whether a denser grid sample boosted by sensor-based soil property predictions enhances soil property maps, ordinary kriging of the laboratory-measured soil properties from the thin grid was compared to ordinary kriging of the sensor-based predictions from the dense grid, and ordinary cokriging of the laboratory properties aided by sensor covariate data. The combination of multiple soil sensors improved the MLR predictions for all soil properties relative to single sensors. The pXRF data produced the best MLR predictions for organic C content, clay content, and bulk density, standing out as the best single sensor for soil property prediction, whereas the other sensors combined outperformed the pXRF sensor for the sum of bases, cation exchange capacity, and soil volumetric moisture, based on independent validation. Ordinary kriging of sensor-based predictions outperformed the other interpolation approaches for all soil properties, except organic C content, based on validation results. Thus, combining soil sensors, and using sensor-based soil property predictions to increase the sample size and spatial coverage, leads to more detailed and accurate soil property maps.
    Type of Medium: Online Resource
    ISSN: 2571-8789
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2932897-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Bragantia, FapUNIFESP (SciELO), Vol. 70, No. 3 ( 2011-09-30), p. 590-597
    Abstract: This study aimed to derive mathematical models to predict the soil organic matter content based on soil color obtained by a colorimeter in the Munsell color system. A total of 907 soil samples were collected in the region of Porto Grande (Amapá, Brazil) and analyzed in the laboratory for chemical properties, particle size distribution and color of dry and wet samples. The Munsell color components value and croma obtained using a colorimeter were used to predict soil organic matter content based on stepwise multiple linear regression. Models derived using all samples had R² of 0.66 for wet samples and 0.56 for dry samples, respectively, when validated using independent samples. It was possible to improve the models by separating the samples by soil class or texture. The models derived using colors obtained from wet samples were systematically better than those based on dry samples. Among soil classes, best results were obtained for Argissolos (Ultisols) and Latossolos (Oxisols), both having an R² of independent validation of 0.73 (wet sample). For texture, best results were obtained for very clayey soils, with an R² of validation of 0.81 (wet sample). The soil organic matter prediction models based on soil color have simplicity and potential to be used in the laboratory and in the field with quick and unnecessary chemical products, especially for Ultisols and Oxisols of clayey texture.
    Type of Medium: Online Resource
    ISSN: 1678-4499 , 0006-8705
    Language: Unknown
    Publisher: FapUNIFESP (SciELO)
    Publication Date: 2011
    detail.hit.zdb_id: 2016147-5
    detail.hit.zdb_id: 730577-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Soil Systems, MDPI AG, Vol. 4, No. 3 ( 2020-09-07), p. 56-
    Abstract: Finding an ideal sampling design is a crucial stage in detailed soil mapping to assure reasonable accuracy of resulting soil property maps. This study aimed to evaluate the influence of sampling designs and sample sizes on the quality of soil apparent electrical conductivity (ECa) maps from an electromagnetic sensor survey. Twenty-six (26) parallel transects were gathered in a 72-ha plot in Southeastern Brazil. Soil ECa measurements using an on-the-go electromagnetic induction sensor were taken every second using sensor vertical orientation. Two approaches were used to reduce the sample size and simulate kriging interpolations of soil ECa. Firstly, the number of transect lines was reduced by increasing the distance between them; thus, 26 transects with 40 m spacing; 13 with 80 m; 7 with 150 m; and 4 with 300 m. Secondly, random point selection and Douglas-Peucker algorithms were used to derive four reduced datasets by removing 25, 50, 75, and 95% of the points from the ECa survey dataset. Soil ECa was interpolated at 5 m output spatial resolution using ordinary kriging and the four datasets from each simulation (a total of twelve datasets). Map uncertainty was assessed by root mean square error and mean error metrics from 400 random samples previously selected for external map validation. Maps were evaluated on their uncertainty and spatial structure of variation. The transect elimination approach showed that maps produced with transect spacing up to 150 m could preserve the spatial structure of ECa variations. Douglas-Peucker results showed lower nugget values than random point simulations for all selected sample densities, except for a 95% point reduction. The soil ECa maps derived from the 75% reduced dataset (by random sampling or Douglas-Peucker) or from 13 transect lines (80 m spacing) showed reasonable accuracy (RMSE of validation circa 0.7) relative to the map interpolated from all survey points (RMSE of 0.5), suggesting that transect spacing of 80 m and reading intervals greater than one second can be used for improving the efficiency of on-the-go soil ECa surveys.
    Type of Medium: Online Resource
    ISSN: 2571-8789
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2932897-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Applied Geophysics, Elsevier BV, Vol. 206 ( 2022-11), p. 104797-
    Type of Medium: Online Resource
    ISSN: 0926-9851
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1110469-7
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: AgriEngineering, MDPI AG, Vol. 5, No. 4 ( 2023-12-06), p. 2326-2348
    Abstract: The precision agriculture scientific field employs increasingly innovative techniques to optimize inputs, maximize profitability, and reduce environmental impacts. Therefore, obtaining a high number of soil samples to make precision agriculture feasible is challenging. This data bottleneck has been overcome by identifying sub-regions based on data obtained through proximal soil sensing equipment. These data can be combined with freely available remote sensing data to create more accurate maps of soil properties. Furthermore, these maps can be optimally aggregated and interpreted for soil heterogeneity through management zones. Thus, this work aimed to create and combine soil management zones from proximal soil sensing and remote sensing data. To this end, data on electrical conductivity and magnetic susceptibility, both apparent, were measured using the EM38-MK2 proximal soil sensor and the contents of the thorium and uranium elements, both equivalent, via the Medusa MS1200 proximal soil sensor for a 72-ha grain-producing area in São Paulo, Brazil. The proximal soil sensing attributes were mapped using ordinary kriging (OK). Maps were also made using kriging with external drift (KED), and the proximal soil sensor attributes data, combined with remote sensing data, such as Landsat-8, Aster, and Sentinel-2 images, in addition to 10 terrain covariables derived from the digital elevation model Alos Palsar. As a result, three management zone maps were produced via the k-means clustering algorithm: using data from proximal sensors (OK), proximal sensors combined with remote sensors (KED), and remote sensors. Seventy-two samples (0–10 cm in depth) were collected and analyzed in a laboratory (1 sample per hectare) for concentrations of clay, calcium, organic carbon, and magnesium to assess the capacity of the management zone maps created using analysis of variance. All zones created using the three data groups could distinguish the different treatment areas. The three data sources used to map management zones produced similar map zones, but the zone map using a combination of proximal and remote data did not show an improvement in defining the management zones, and using only remote sensing data lowered the significance levels of differentiating each zone compared to the OK and KED maps. In summary, this study not only underscores the global applicability of proximal and remote sensing techniques in precision agriculture but also sheds light on the nuances of their integration. The study’s findings affirm the efficacy of these advanced technologies in addressing the challenges posed by soil heterogeneity, paving the way for more nuanced and site-specific agricultural practices worldwide.
    Type of Medium: Online Resource
    ISSN: 2624-7402
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2946408-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: SOIL, Copernicus GmbH, Vol. 4, No. 3 ( 2018-08-01), p. 173-193
    Abstract: Abstract. Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM). We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5 × 5 km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between ∼ 1 and ∼ 60 %, with no universal predictive algorithm among countries. A regional (n = 11 268 SOC estimates) ensemble of these five algorithms was able to explain ∼ 39 % of SOC variability from repeated 5-fold cross-validation. We report a combined SOC stock of 77.8 ± 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 ± 16.5 Pg) and croplands (13 ± 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 ± 42.2 and 76.8 ± 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.
    Type of Medium: Online Resource
    ISSN: 2199-398X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2834892-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...