GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-09-07)
    Abstract: Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 4, No. 1 ( 2013-03-05)
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Stem Cell Reports, Elsevier BV, Vol. 1, No. 6 ( 2013-12), p. 575-589
    Type of Medium: Online Resource
    ISSN: 2213-6711
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 2720528-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 113, No. suppl_1 ( 2013-08)
    Abstract: The circulatory system is the first functional organ system that develops during mammalian life. Accumulating evidences suggest that cardiac and endocardial cells can arise from a single common progenitor cell during mammalian cardiogenesis. Notably, these early cardiac progenitors express multiple hematopoietic transcription factors, consistent with previous reports. Indeed, a close relationship among cardiac, endocardial and hematopoietic lineages has been suggested in fly, zebrafish, and embryonic stem cell in vitro differentiation models. However, it is unclear when, where and how this hematopoietic gene program is in operation during in vivo mammalian cardiogenesis. Hematopoietic colony assay suggests that mouse heart explants generate myeloids and erythroids in the absence of circulation, suggesting that the heart tube is a de novo site for the definitive hematopoiesis. Lineage tracing revealed that putative cardiac-derived Nkx2-5+/Isl1+ endocardial cells give rise to CD41+ hematopoietic progenitors that contribute to definitive hematopoiesis in vivo and ex vivo during embryogenesis earlier than in the AGM region. Furthermore, Nkx2-5 and Isl1 are both required for the hemogenic activity of the endocardium. Together, identification of Nkx2-5/Isl1-dependent hemogenic endocardial cells (1) adds hematopoietic component in the cardiogenesis lineage tree, (2) changes the long-held dogma that AGM is the only major source of definitive hematopoiesis in the embryo proper, and (3) represents phylogenetically conserved fundamental mechanism of cardio-vasculo-hematopoietic differentiation pathway during the development of circulatory system.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2013
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Virology, American Society for Microbiology, Vol. 87, No. 4 ( 2013-02-15), p. 2094-2108
    Abstract: Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope's natural tropism while modifying the receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular marker of “stemness” (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific cancers. NiV entry requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (∼10 6 IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5FΔN3). T5FΔN3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2 + cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5FΔN3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2 + populations in vivo or in vitro .
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Virology, American Society for Microbiology, Vol. 87, No. 8 ( 2013-04-15), p. 4794-4794
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1227-1227
    Abstract: Abstract 1227 Erythropoiesis in mammals occurs in three waves consisting of primitive progenitors in the yolk sac, definitive erythroid precursors in the fetal liver and later in the postnatal bone marrow. The molecular determinants of developmental stage-specific gene expression programs remain largely unknown. Several transcription factors, including GATA1 and TAL1, are essential for normal erythroid development in vivo and are recognized as ‘master’ regulators. These lineage-specifying master regulators, together with other transcriptional co-regulators, act within complexes on chromatin, establish transcriptional networks, and orchestrate the differentiation process. However, it is less clear how master regulators control gene expression programs at different stages of development within the same cell lineage. We reasoned that comparative transcriptome, transcription factor, and epigenetic profiling of closely related cell types corresponding to distinct developmental stages should delineate the regulatory networks that are directly related to the associated gene expression programs. Classification of the trans- and cis-regulatory elements that are either shared or stage-specific should clarify their relative importance and prioritize functional candidates. To explore this approach, we focused on an ex vivo maturation system for human fetal and adult erythropoiesis. Primary human hematopoietic stem/progenitor cells (HSPCs) are propagated and induced for erythroid differentiation ex vivo. We first determined the mRNA expression profiles in both fetal and adult HSPCs and differentiating proerythroblasts (ProEs). Comparative transcriptome profiling revealed distinct gene expression programs at different stages of erythroid maturation. For example, 1039 and 1291 genes linked to distinct functional annotations were differentially expressed (fold change 〉 1.5, FDR 〈 0.05) in fetal and adult ProEs, respectively. To investigate the underlying basis of these distinct gene expression programs, we generated genome-wide maps for chromatin state and transcription factor occupancy by a ChIP-seq approach. Specifically, we profiled 9 histone modifications (H3K4me1/me2/me3, H3K9me3, H3K37me3, H3K36me2/me3, H3K9ac, and H3K27ac) and 6 transcription factors (GATA1, TAL1, NFE2, CTCF, RAD21, and RNA polymerase II) in both fetal and adult ProEs. Contrasting the similarities and differences between human fetal and adult erythropoiesis provides important insights into the erythroid gene expression programs and gene regulatory networks operating at different stages of development. We find that gene-distal enhancers, rather than promoters, are marked with highly stage-specific histone modifications and DNase I hypersensitivity, strongly correlate to developmental stage-specific gene expression changes, and are functionally active in a stage-specific manner. The master regulators GATA1 and TAL1 act cooperatively within active enhancers but have little predictive value for stage-specific transcriptional activity. Differential enrichment of consensus motifs for binding of transcription factors within fetal or adult stage-specific enhancers provides a strategy for identifying candidate co-regulators that drive differential gene expression and stage-specificity. By this computational approach and subsequent functional validation, we demonstrate that the interferon regulatory factors IRF2 and IRF6 are essential for activation of adult erythroid gene expression programs in cooperation with master regulators and cohesin-mediator complexes at distal enhancers. Thus, the comparative profiling of red cell development provides critical insights into the ontogeny of human erythropoiesis and temporal regulation of transcriptional networks in a mammalian genome. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2362-2362
    Abstract: Abstract 2362 The endothelium in embryonic and extraembryonic hematopoietic tissues has the capacity to generate hematopoietic stem and progenitor cells (HS/PC). However, it is unknown how this unique endothelium is specified. Microarray analysis of endothelial cells from hematopoietic tissues of embryos deficient for the bHLH transcription factor Scl/tal1 revealed that Scl establishes a robust hematopoietic transcriptional program in the endothelium. Surprisingly, lack of Scl also induced an unexpected fate switching of the prospective hemogenic endothelium to the cardiac lineage. Scl deficient embryos displayed a dramatic upregulation of cardiac transcription factors and structural proteins within the yolk sac vasculature, resulting in the generation of spontaneously beating cardiomyocytes. Ectopic cardiac potential in Scl deficient embryos arose from endothelial-derived CD31+Pdgfrα+ cardiogenic progenitor cells (CPCs), which were present in all sites of HS/PC generation. Analysis of Runx1-deficient embryos revealed, that although Runx1 acts downstream of Scl during the emergence of definitive HS/PCs, it is not required for the suppression of the cardiac fate in the endothelium. The only wild type tissue that contained CD31+Pdgfrα+ putative CPCs was the heart, and this population was greatly expanded in Scl deficient embryos. Strikingly, endocardium in Scl−/− hearts also activated a robust cardiomyogenic transcriptional program and generated Troponin T+ cardiomyocytes both in vivo and in vitro. Although CD31+Pdgfrα+ CPCs from wild type hearts did not generate readily beating cells in culture, they produced cells expressing endothelial, smooth muscle and cardiomyocyte specific genes, implying multipotentiality of this novel CPC population. Furthermore, CD31+Pdgfrα+ CPCs were greatly reduced in Isl1−/− hearts, which fail to generate functional, multipotential CPCs. Lineage tracing using VE-cadherin Cre Rosa-YFP mouse strain demonstrated that, in addition to generating HS/PCs in hematopoietic tissues, endothelial cells are also the cell of origin for CD31+Pdgfrα+ CPCs in the heart. Together, these data suggest a broader role for embryonic endothelium as a potential source of tissue-specific stem and progenitor cells and implicate Scl/tal1 as an important regulator of endothelial fate choice. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3446-3446
    Abstract: Abstract 3446 Understanding the mechanisms of mesoderm specification into the different lineages during embryogenesis holds a great potential to advance the development of cell-based regenerative therapies for cardiovascular and blood disorders. The divergence of the developmental fates is dictated by transcription factors that induce lineage-specific gene expression programs. The basic helix-loop-helix transcription factor Scl is known as the master regulator for the specification of the hematopoietic fate. We recently discovered that, in addition to positive effects of Scl in promoting the establishment of hemogenic endothelium and hematopoietic stem/progenitor cells development, it is also required to repress cardiogenesis in hematopoietic tissues during developmentally defined window (Van Handel, Montel-Hagen, et al, Cell, 2012). However, how Scl regulates hematopoiesis and cardiogenesis remains unknown. To identify Scl's direct target genes during mesoderm diversification, we determined the genome-wide Scl binding sites in Flk+ mesoderm from embryoid bodies using ChIP-sequencing. This analysis identified ∼4600 Scl binding sites throughout the genome, with predominance in inter-genic regions. Comparison with previously published Scl ChIP-seq datasets during later stages of development (HPC7 hematopoietic progenitor cell-line, Wilson et al. 2010, and red blood cells from fetal liver, Kassouf et al. 2010) revealed that the majority of the binding sites are developmental stage specific. Using nearest gene approach to intersect ChIP-seq data with gene expression data showed that the regulating regions of about 35% of Scl activated and 20% of repressed genes in Flk+ mesoderm were bound by Scl. Similar to later stages of hematopoietic development, robust binding of Scl to key hematopoietic transcription factors downstream of Scl, such as Runx1, Gata1, Gata2, Lyl1, Eto2, Erg, Fli1, Hhex, Gfi1, Gfi1b and Myb was observed during mesoderm specification. Interestingly, genomic regions enrichment analysis of Scl binding sites unique to Flk+ mesoderm showed enrichment for genes implicated in mesoderm formation and heart development, such as Gata4, Gata6, Msx1, Myocd, Nkx2–5 and Tbx5 indicating Scl functions as a direct repressor for cardiogenic transcriptional program. We then went on to investigate the mechanism of how Scl distinguishes between cardiac and hematopoietic genes to repress or activate them. Previous studies have shown that Scl forms complex with Gata1/2 transcription factors to activate red cell transcriptional program in erythroid cells. To clarify whether Gata1/2 are required in Scl binding and functional distinction between activation and repression during mesoderm specification, we performed Scl ChIP sequencing on Flk+ mesoderm from embryoid bodies induced from Gata1/2 double KO ES cells. Unexpectedly, Scl still bound to most hematopoietic as well as cardiac sites. However, some specific binding sites around key hematopoietic genes were completely lost or significantly reduced, such as ∼+300kb Runx1, ∼+30kb Myb and ∼TSS of Pu.1, and the expression of these genes was also down regulated in agreement with the loss of CD41+ hematopoietic progenitors in Day4.5 embryonic bodies. This suggests that Gata1/2 are required for Scl binding to the regulatory regions of a subset of crucial hematopoietic genes. These studies show that Scl has a direct critical function both as an activator of hematopoietic fate and a repressor of cardiac fate during mesoderm diversification, and only a fraction of Scl binding sites are Gata1 and/or Gata2 dependent. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Communications Biology, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2022-02-25)
    Type of Medium: Online Resource
    ISSN: 2399-3642
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2919698-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...