GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2002
    In:  Molecular and Biochemical Parasitology Vol. 119, No. 1 ( 2002-1), p. 55-62
    In: Molecular and Biochemical Parasitology, Elsevier BV, Vol. 119, No. 1 ( 2002-1), p. 55-62
    Type of Medium: Online Resource
    ISSN: 0166-6851
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 1491098-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proteome Science, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2009), p. 22-
    Type of Medium: Online Resource
    ISSN: 1477-5956
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 2141087-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Infection and Immunity, American Society for Microbiology, Vol. 70, No. 2 ( 2002-02), p. 612-619
    Abstract: Hemolytic-uremic syndrome (HUS) is a serious complication predominantly associated with infection by enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7. EHEC can produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2), both of which are exotoxins comprised of active (A) and binding (B) subunits. In piglets and mice, Stx can induce fatal neurological symptoms. Polyclonal Stx2 antiserum can prevent these effects in piglets infected with the Stx2-producing E. coli O157:H7 strain 86-24. Human monoclonal antibodies (HuMAbs) against Stx2 were developed as potential passive immunotherapeutic reagents for the prevention and/or treatment of HUS. Transgenic mice bearing unrearranged human immunoglobulin (Ig) heavy and κ light chain loci (HuMAb___Mouse) were immunized with formalin-inactivated Stx2. Thirty-seven stable hybridomas secreting Stx2-specific HuMAbs were isolated: 33 IgG1κ A-subunit-specific and 3 IgG1κ and 1 IgG3κ B-subunit-specific antibodies. Six IgG1κ A-subunit-specific (1G3, 2F10, 3E9, 4H9, 5A4, and 5C12) and two IgG1κ B-subunit-specific (5H8 and 6G3) HuMAbs demonstrated neutralization of 〉 95% activity of 1 ng of Stx2 in the presence of 0.04 μg of HuMAb in vitro and significant prolongation of survival of mice given 50 μg of HuMAb intraperitoneally (i.p.) and 25 ng of Stx2 intravenously. When administered i.p. to gnotobiotic piglets 6 or 12 h after infection with E. coli O157:H7 strain 86-24, HuMAbs 2F10, 3E9, 5H8, and 5C12 prolonged survival and prevented development of fatal neurological signs and cerebral lesions. The Stx2-neutralizing ability of these HuMAbs could potentially be used clinically to passively protect against HUS development in individuals infected with Stx-producing bacteria, including E. coli O157:H7.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Infection and Immunity, American Society for Microbiology, Vol. 78, No. 3 ( 2010-03), p. 1376-1382
    Abstract: 5C12 HuMAb is a human monoclonal antibody against the A subunit of Shiga toxin 2 (Stx2). We have previously shown that 5C12 HuMAb effectively neutralizes the cytotoxic effects of this toxin by redirecting its transport within the cell and also by neutralizing the toxin's ability to inhibit protein synthesis. The 5C12 HuMAb and its recombinant IgG1 version protect mice at a dose of 0.6 μg against a lethal challenge of Stx2. The contribution of the Fc region to this observed neutralization activity of the 5C12 antibody against Stx2 was investigated in this study. Using recombinant DNA technology, 5C12 isotype variants (IgG1, IgG2, IgG3, and IgG4) and antibody fragments [Fab, F(ab′) 2 ] were expressed in Chinese hamster ovary cells and evaluated in vitro and in vivo . All four 5C12 isotype variants showed protection in vitro , with the IgG3 and IgG4 variants showing the highest protection in vivo . The Fab and F(ab′) 2 fragments also showed protection in vitro but no protection in the mouse toxicity model. Similar results were obtained for a second HuMAb (5H8) against the B subunit of Stx2. The data suggest the importance of the Fc region for neutralization activity, but it is not clear if this is related to the stability of the full-length antibody or if the Fc region is required for effective elimination of the toxin from the body.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 1998
    In:  Journal of Clinical Microbiology Vol. 36, No. 9 ( 1998-09), p. 2503-2508
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 36, No. 9 ( 1998-09), p. 2503-2508
    Abstract: Cryptosporidiosis is a serious disease in malnourished children and in people with malignancies or AIDS. Current rodent models for evaluating drug therapy against cryptosporidiosis have many limitations, including the need for a high inoculum, the absence of symptoms resembling those seen in humans, and the need to maintain exogenous immunosuppression. We have developed a gamma interferon knockout (GKO) mouse model with which to evaluate therapies against C. parvum and have used paromomycin for evaluation of this model. The GKO model offers considerable improvements over other systems, since it requires no additional immunosuppression and adult mice can be infected with as few as 10 oocysts (compared with 10 7 for SCID mice). Infected mice develop profound gastrointestinal dysfunction due to extensive infection and severe mucosal damage involving the entire small intestine. Clinical symptoms, which include depression, anorexia, weight loss, and wasting, result in death within 2 to 4 weeks. The time of death depends on the oocyst challenge dose. Paromomycin modulated parasitological and clinical parameters in highly predictable and significant ways, including prevention of death. In addition, examination of the extensively infected gut provided an important insight into the dynamics between a specific drug treatment, its impact on the extent and the site of parasite distribution, and clinical outcome. These uniform symptoms of weight loss, wasting, and death are powerful new parameters which bring this model closer to the actual disease seen in humans and other susceptible mammalian species.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Applied and Environmental Microbiology Vol. 79, No. 17 ( 2013-09), p. 5357-5362
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 79, No. 17 ( 2013-09), p. 5357-5362
    Abstract: Enterocytozoon bieneusi (phylum Microsporidia ) is a human pathogen with a broad host range. Following the sequencing of 3.8 Mb of the estimated 6-Mb E. bieneusi genome, simple sequence repeats (micro- and minisatellites) were identified. Sequencing of four such repeats from various human and animal E. bieneusi isolates identified extensive sequence polymorphism and enabled the development of a multilocus genotyping method to study the epidemiology of this pathogen. We genotyped E. bieneusi DNA extracted from 197 fecal samples originating from children with diarrhea who were residing in Kampala, Uganda. Three newly identified microsatellite markers and the internal transcribed spacer were PCR amplified, and multiple cloned amplicons for each marker were sequenced from each individual. Most microsatellite sequences were unique to the Ugandan population. Significantly, polymorphism not only was present among isolates but was also found within isolates. This observation suggests that infections with heterogeneous E. bieneusi populations are common in this region. However, the data do not exclude that some of the polymorphism originates from divergent paralogs within the genome. The frequent occurrence of multiple sequences within an isolate precluded the identification of multilocus genotypes. This observation raises the possibility that in a region in which the prevalence of E. bieneusi is high, sequencing of uncloned PCR products may not be adequate for multilocus genotyping.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Infection and Immunity, American Society for Microbiology, Vol. 80, No. 8 ( 2012-08), p. 2678-2688
    Abstract: The global emergence of Clostridium difficile infection (CDI) has contributed to the recent surge in severe antibiotic-associated diarrhea and colonic inflammation. C. difficile produces two homologous glucosylating exotoxins, TcdA and TcdB, both of which are pathogenic and require neutralization to prevent disease occurrence. However, because of their large size and complex multifunctional domain structures, it has been a challenge to produce native recombinant toxins that may serve as vaccine candidates. Here, we describe a novel chimeric toxin vaccine that retains major neutralizing epitopes from both toxins and confers complete protection against primary and recurrent CDI in mice. Using a nonpathogenic Bacillus megaterium expression system, we generated glucosyltransferase-deficient holotoxins and demonstrated their loss of toxicity. The atoxic holotoxins induced potent antitoxin neutralizing antibodies showing little cross-immunogenicity or protection between TcdA and TcdB. To facilitate simultaneous protection against both toxins, we generated an active clostridial toxin chimera by switching the receptor binding domain of TcdB with that of TcdA. The toxin chimera was fully cytotoxic and showed potent proinflammatory activities. This toxicity was essentially abolished in a glucosyltransferase-deficient toxin chimera, cTxAB. Parenteral immunization of mice or hamsters with cTxAB induced rapid and potent neutralizing antibodies against both toxins. Complete and long-lasting disease protection was conferred by cTxAB vaccinations against both laboratory and hypervirulent C. difficile strains. Finally, prophylactic cTxAB vaccination prevented spore-induced disease relapse, which constitutes one of the most significant clinical issues in CDI. Thus, the rational design of recombinant chimeric toxins provides a novel approach for protecting individuals at high risk of developing CDI.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society for Microbiology ; 2002
    In:  Infection and Immunity Vol. 70, No. 10 ( 2002-10), p. 5896-5899
    In: Infection and Immunity, American Society for Microbiology, Vol. 70, No. 10 ( 2002-10), p. 5896-5899
    Abstract: Hemolytic-uremic syndrome (HUS) is a serious complication which is predominantly associated in children with infection by Shiga toxin-producing Escherichia coli (STEC). By using HuMAb-Mouse (Medarex) animals, human monoclonal antibodies (Hu-MAbs) were developed against Shiga toxin 1 (Stx1) for passive immunotherapy of HUS. Ten stable hybridomas comprised of fully human heavy- and light-chain immunoglobulin elements and secreting Stx1-specific Hu-MAbs (seven immunoglobulin M(κ) [IgM(κ)] elements [one specific for the A subunit and six specific for the B subunit] and three IgG1(κ) elements specific for subunit B) were isolated. Two IgM(κ) Hu-MAbs (2D9 and 15G9) and three IgG1(κ) Hu-MAbs (5A4, 10F4, and 15G2), all specific for subunit B, demonstrated marked neutralization of Stx1 in vitro and significant prolongation of survival in a murine model of Stx1 toxicosis.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2002
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society for Microbiology ; 2005
    In:  Infection and Immunity Vol. 73, No. 8 ( 2005-08), p. 5245-5248
    In: Infection and Immunity, American Society for Microbiology, Vol. 73, No. 8 ( 2005-08), p. 5245-5248
    Abstract: Recombinant antigens of Cryptosporidium parvum , Cp900 and Cp40 but not Cp15, stimulated C. parvum -specific proliferative immune responses of mesenteric lymph node cells in C57BL/6J mice infected with different isolates (MD, GCH1, UCP, and IOWA) of C. parvum , indicating that both Cp900 and Cp40 are immunodominant targets of cellular immune responses during C. parvum infection.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Infection and Immunity, American Society for Microbiology, Vol. 66, No. 5 ( 1998-05), p. 2379-2382
    Abstract: The protozoan parasite Cryptosporidium parvum invades intestinal epithelial cells and can cause life-threatening diarrhea in immunocompromised individuals. Despite the clinical importance of this organism, much remains to be learned about the pathogenesis of C. parvum -induced diarrhea. To explore the role of the intestinal inflammatory response in C. parvum disease, using C. parvum oocysts we infected human intestinal xenografts in severe combined immunodeficient (SCID) mice. Seven days after infection, we found levels of human tumor necrosis factor alpha and interleukin-8 in C. parvum -infected human intestinal xenografts that were significantly higher than those seen in uninfected control xenografts. These results demonstrate that human intestinal cells produce proinflammatory cytokines in response to C. parvum infection and establish SCID-HU-INT mice as a model system to study the interactions of C. parvum with the human intestine.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...