GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: TAXON, Wiley, Vol. 68, No. 4 ( 2019-08), p. 617-623
    Type of Medium: Online Resource
    ISSN: 0040-0262 , 1996-8175
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2081189-5
    detail.hit.zdb_id: 204216-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 10 ( 2017-03-07), p. 2645-2650
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 10 ( 2017-03-07), p. 2645-2650
    Abstract: We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga . We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia , Protieae, and Guatteria . Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  New Phytologist Vol. 234, No. 4 ( 2022-05), p. 1491-1506
    In: New Phytologist, Wiley, Vol. 234, No. 4 ( 2022-05), p. 1491-1506
    Abstract: Many diverse plant clades possess bilaterally symmetrical flowers and specialised pollination syndromes, suggesting that these traits may promote diversification. We examined the evolution of diverse floral morphologies in a species‐rich tropical radiation of Rhododendron . We used restriction‐site associated DNA sequencing on 114 taxa from Rhododendron sect. Schistanthe to reconstruct phylogenetic relationships and examine hybridisation. We then captured and quantified floral variation using geometric morphometric analyses, which we interpreted in a phylogenetic context. We uncovered phylogenetic conflict and uncertainty caused by introgression within and between clades. Morphometric analyses revealed flower symmetry to be a morphological continuum without clear transitions between radial and bilateral symmetry. Tropical Rhododendron species that began diversifying into New Guinea c . 6 million years ago expanded into novel floral morphological space. Our results showed that the evolution of tropical Rhododendron is characterised by recent speciation, recurrent hybridisation and the origin of floral novelty. Floral variation evolved via changes to multiple components of the corolla that are only recognised in geometric morphometrics with both front and side views of flowers.
    Type of Medium: Online Resource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 208885-X
    detail.hit.zdb_id: 1472194-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2014
    In:  American Journal of Botany Vol. 101, No. 2 ( 2014-02), p. 308-317
    In: American Journal of Botany, Wiley, Vol. 101, No. 2 ( 2014-02), p. 308-317
    Abstract: • Premise of the study: A major benefit conferred by monoecy is the ability to alter floral sex ratio in response to selection. In monoecious species that produce flowers of a given sex at set positions on the inflorescence, floral sex ratio may be related to inflorescence architecture. We studied the loci underlying differences in inflorescence architecture between two monoecious Begonia species and related this to floral sex ratios. • Methods: We performed trait comparisons and quantitative trait locus (QTL) mapping in a segregating backcross population between Central American Begonia plebeja and B. conchifolia . We focused on traits related to inflorescence architecture, sex ratios, and other reproductive traits. • Key results: The inflorescence branching pattern of B. conchifolia was more asymmetric than B. plebeja , which in turn affects the floral sex ratio. Colocalizing QTLs of moderate effect influenced both the number of male flowers and the fate decisions of axillary meristems, demonstrating the close link between inflorescence architecture and sex ratio. Additional QTLs were found for stamen number (30% variance explained, VE) and pollen sterility (12.3% VE). • Conclusions: One way in which Begonia species develop different floral sex ratios is through modifications of their inflorescence architecture. The potential pleiotropic action of QTL on inflorescence branching and floral sex ratios may have major implications for trait evolution and responses to selection. The presence of a single QTL of large effect on stamen number may allow rapid divergence for this key floral trait. We propose candidate loci for stamen number and inflorescence branching for future characterization.
    Type of Medium: Online Resource
    ISSN: 0002-9122 , 1537-2197
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2053581-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Annals of Botany Vol. 128, No. 5 ( 2021-09-07), p. 639-651
    In: Annals of Botany, Oxford University Press (OUP), Vol. 128, No. 5 ( 2021-09-07), p. 639-651
    Abstract: Genome size varies considerably across the diversity of plant life. Although genome size is, by definition, affected by genetic presence/absence variants, which are ubiquitous in population sequencing studies, genome size is often treated as an intrinsic property of a species. Here, we studied intra- and interspecific genome size variation in taxonomically complex British eyebrights (Euphrasia, Orobanchaceae). Our aim is to document genome size diversity and investigate underlying evolutionary processes shaping variation between individuals, populations and species. Methods We generated genome size data for 192 individuals of diploid and tetraploid Euphrasia and analysed genome size variation in relation to ploidy, taxonomy, population affiliation and geography. We further compared the genomic repeat content of 30 samples. Key results We found considerable intraspecific genome size variation, and observed isolation-by-distance for genome size in outcrossing diploids. Tetraploid Euphrasia showed contrasting patterns, with genome size increasing with latitude in outcrossing Euphrasia arctica, but with little genome size variation in the highly selfing Euphrasia micrantha. Interspecific differences in genome size and the genomic proportions of repeat sequences were small. Conclusions We show the utility of treating genome size as the outcome of polygenic variation. Like other types of genetic variation, such as single nucleotide polymorphisms, genome size variation may be affected by ongoing hybridization and the extent of population subdivision. In addition to selection on associated traits, genome size is predicted to be affected indirectly by selection due to pleiotropy of the underlying presence/absence variants.
    Type of Medium: Online Resource
    ISSN: 0305-7364 , 1095-8290
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1461328-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Annals of Botany, Oxford University Press (OUP), ( 2023-11-14)
    Abstract: Exploring how species diverge is vital for understanding the drivers of speciation. Factors such as geographic separation and ecological selection, hybridization, polyploidization and shifts in mating system are all major mechanisms of plant speciation, but their contributions to divergence are rarely well-understood. Here we test these mechanisms in two plant species, Gentiana lhassica and G. hoae, with the goal of understanding recent allopatric species divergence in the Qinghai-Tibet Plateau (QTP). Methods We performed Bayesian clustering, phylogenetic analysis and estimates of hybridization using 561,302 nuclear genomic SNPs. We performed redundancy analysis, and identified and annotated species-specific SNPs (ssSNPs) to explore the association between climatic preference and genetic divergence. We also estimated the genome sizes using flow cytometry to test for overlooked polyploidy. Key Results Genomic evidence confirms that G. lhassica and G. hoae are closely related but distinct species, while genome size estimates show divergence occurred without polyploidy. G. hoae has significantly higher average Fis value than G. lhassica. Population clustering based on genomic SNPs shows no signature of recent hybridization, however each species is characterized by a distinct history of hybridization with congeners that has shaped genome wide variation. G. lhassica has captured the chloroplast and experienced introgression with a divergent gentian species, while G. hoae has experienced recurrent hybridization with related taxa. Species distribution modelling suggested range overlap in the last Interglacial period, while redundancy analysis showed that precipitation and temperature are the major climatic differences explaining the separation of the species. The species differ by 2,993 ssSNPs, with genome annotation showing missense variants in genes involved in stress resistance. Conclusions This study suggests that the distinctiveness of these species in the QTP is driven by a combination of hybridization, geographical isolation, mating system differences and evolution of divergent climatic preferences.
    Type of Medium: Online Resource
    ISSN: 0305-7364 , 1095-8290
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1461328-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Plant Science Vol. 13 ( 2022-8-25)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-8-25)
    Abstract: Understanding the evolutionary and ecological processes driving population differentiation and speciation can provide critical insights into the formation of biodiversity. Here, we examine the link between population genetic processes and biogeographic history underlying the generation of diversity in the Hengduan Mountains (HM), a region harboring a rich and dynamic flora. We used restriction site-associated DNA sequencing to generate 1,907 single-nucleotide polymorphisms (SNPs) and four-kb of plastid sequence in species of the Gentiana hexaphylla complex (Gentianaceae). We performed genetic clustering with spatial and non-spatial models, phylogenetic reconstructions, and ancestral range estimation, with the aim of addressing the processes influencing diversification of G. hexaphylla in the HM. We find the G. hexaphylla complex is characterized by geographic genetic structure with clusters corresponding to the South, North and the central HM. Phylogenetic reconstruction and pairwise F ST analyses showed deep differentiation between Southern and Northern populations in the HM. The population in Mount Taibai exhibited the highest genetic similarity to the North HM. Ancestral range estimation indicated that the G. hexaphylla complex originated in the central HM and then diverged in the Pliocene and the Early Pleistocene, before dispersing widely, resulting in the current distinct lineages. Overall, we found deep genomic differentiation in the G. hexaphylla complex corresponds to geographic barriers to dispersal in the HM and highlights a critical role of the uplift of the Daxue Mountains and subsequent climatic fluctuations underlying diversification. The colonization of G. hexaphylla in the Mount Taibai region suggests directional dispersal between the alpine flora of the Qinling Mountains and the HM.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Plant Science Vol. 13 ( 2022-5-27)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-5-27)
    Abstract: Disentangling the phylogenetic relationships of taxonomically complex plant groups is often mired by challenges associated with recent speciation, hybridization, complex mating systems, and polyploidy. Here, we perform a phylogenomic analysis of eyebrights ( Euphrasia ), a group renowned for taxonomic complexity, with the aim of documenting the extent of phylogenetic discordance at both deep and at shallow phylogenetic scales. We generate whole-genome sequencing data and integrate this with prior genomic data to perform a comprehensive analysis of nuclear genomic, nuclear ribosomal (nrDNA), and complete plastid genomes from 57 individuals representing 36 Euphrasia species. The species tree analysis of 3,454 conserved nuclear scaffolds (46 Mb) reveals that at shallow phylogenetic scales postglacial colonization of North Western Europe occurred in multiple waves from discrete source populations, with most species not being monophyletic, and instead combining genomic variants from across clades. At a deeper phylogenetic scale, the Euphrasia phylogeny is structured by geography and ploidy, and partially by taxonomy. Comparative analyses show Southern Hemisphere tetraploids include a distinct subgenome indicative of independent polyploidy events from Northern Hemisphere taxa. In contrast to the nuclear genome analyses, the plastid genome phylogeny reveals limited geographic structure, while the nrDNA phylogeny is informative of some geographic and taxonomic affinities but more thorough phylogenetic inference is impeded by the retention of ancestral polymorphisms in the polyploids. Overall our results reveal extensive phylogenetic discordance at both deeper and shallower nodes, with broad-scale geographic structure of genomic variation but a lack of definitive taxonomic signal. This suggests that Euphrasia species either have polytopic origins or are maintained by narrow genomic regions in the face of extensive homogenizing gene flow. Moreover, these results suggest genome skimming will not be an effective extended barcode to identify species in groups such as Euphrasia , or many other postglacial species groups.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Plant Science Vol. 13 ( 2022-7-29)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-7-29)
    Abstract: Genome size variation within plant taxa is due to presence/absence variation, which may affect low-copy sequences or genomic repeats of various frequency classes. However, identifying the sequences underpinning genome size variation is challenging because genome assemblies commonly contain collapsed representations of repetitive sequences and because genome skimming studies by design miss low-copy number sequences. Here, we take a novel approach based on k-mers, short sub-sequences of equal length k , generated from whole-genome sequencing data of diploid eyebrights ( Euphrasia ), a group of plants that have considerable genome size variation within a ploidy level. We compare k-mer inventories within and between closely related species, and quantify the contribution of different copy number classes to genome size differences. We further match high-copy number k-mers to specific repeat types as retrieved from the RepeatExplorer2 pipeline. We find genome size differences of up to 230Mbp, equivalent to more than 20% genome size variation. The largest contributions to these differences come from rDNA sequences, a 145-nt genomic satellite and a repeat associated with an Angela transposable element. We also find size differences in the low-copy number class (copy number ≤ 10×) of up to 27 Mbp, possibly indicating differences in gene space between our samples. We demonstrate that it is possible to pinpoint the sequences causing genome size variation within species without the use of a reference genome. Such sequences can serve as targets for future cytogenetic studies. We also show that studies of genome size variation should go beyond repeats if they aim to characterise the full range of genomic variants. To allow future work with other taxonomic groups, we share our k-mer analysis pipeline, which is straightforward to run, relying largely on standard GNU command line tools.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2016
    In:  Frontiers in Plant Science Vol. 7 ( 2016-04-06)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 7 ( 2016-04-06)
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2016
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...