GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 28, No. 2 ( 2022-02), p. 333-344
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 6 ( 2022-02-08)
    Abstract: Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 615, No. 7952 ( 2023-03-16), p. 507-516
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 53-54
    Abstract: CD19 CAR T cells have revolutionized the treatment of relapsed and refractory (R/R) large B cell lymphomas (LBCL), mediating durable complete responses in approximately 40-50% of patients. Besides a loss or decrease in CD19 expression, no studies have identified tumor specific factors driving inherent or acquired resistance to CAR T cells in LBCL. Mutations in and loss of expression of LFA-3 (CD58) have been described in approximately 20% of cases of LBCL. As the ligand for CD2 on T cells, CD58 provides costimulation to T cells and CD58 loss or mutation has been linked to immune resistance in LBCL. We evaluated CD58 status in fifty-one R/R LBCL patients treated at Stanford with commercial axicabtagene ciloleucel (axi-cel) through immunohistochemistry (IHC) on tumor biopsy samples and/or deep sequencing of circulating tumor DNA by CAPP-Seq. We identified 12/51 (24%) patients with a CD58 aberration (lack of expression by IHC or mutation by CAPP-Seq). Progression-free survival (PFS) was significantly decreased in patients with a CD58 aberration (median PFS for CD58 aberration 3 months vs. not reached for CD58 intact, p & lt;0.0001). In fact, only 1/12 patients with a CD58 alteration achieved a durable, complete response to axi-cel, while the remaining 11 patients progressed, most commonly after a period of initial response. Partial responses were more common among patients with CD58 aberrations (58% for CD58 aberration vs 10% for CD58 intact, p & lt;0.001), and complete responses were less common (25% for CD58 aberration vs 82% for CD58 intact, p & lt;0.0001). To probe the biology of CAR T cell responses towards tumors lacking functional CD58, we generated a CD58 knockout Nalm6 model. CD19.CD28.ζ, CD19.4-1BB.ζ, and CD22.4-1BB.ζ CAR T cells demonstrated significantly reduced cytokine production and cytolytic activity in response to CD58 KO vs wildtype (WT) tumor cells. Additionally, while mice inoculated with WT Nalm6 and treated with any of the three CARs demonstrate complete responses and prolonged leukemia-free survival, mice inoculated with CD58KO Nalm6 demonstrated only partial responses, eventual tumor progression, and death from leukemia. CD2, the T cell ligand for CD58, plays both an adhesive role and a costimulatory role in T cells. CD2 knockout resulted in significantly reduced cytokine production after CAR stimulation. Re-expression of only the CD2 extracellular domain did not rescue CAR function, indicating that CD2 signaling is essential for full CAR activation. Additionally, when we stimulated CD19 CAR T cells with anti-idiotype antibody (CAR stimulation), soluble CD58 (CD2 stimulation), or both, we observed significantly enhanced phosphorylation of both CD3ζ and ERK by western blot in CAR T cells stimulated through both the CAR and CD2. Phosphorylation analysis by mass spectrometry revealed that CD2 stimulation enhances phosphorylation of proximal signaling molecules in the TCR pathway (LCK, LAT, CD3ε among others) and also mediators of actin-cytoskeletal rearrangement in CAR T cells, consistent with effects in natural T cell responses. To overcome CD58 loss in LBCL, we generated second- and third-generation CAR T cell constructs integrating CD2 costimulatory domains within the CAR molecule. While these cis constructs demonstrated increased potency against CD58KO cells in vitro, they were unable to ultimately overcome CD58 loss in vivo. However, when CARs were co-expressed with an additional CD2 receptor in trans, they mediated significant anti-tumor activity in vivo, overcoming CD58 knockout in tumor cells. In conclusion, we have identified that CD58 status is an important biomarker for durable response to CAR T cells in LBCL. We modeled the biologic basis for this finding and generated CAR T cells capable of overcoming CD58 loss in B cell malignancies. CD58 mutations have been reported in many cancers, including multiple myeloma and colon cancer, and are likely to play a role in immune evasion for CAR T cells as they are developed for additional histologies. These data provide rationale for investigating CD58 status for patients receiving CAR based therapeutics and devising next generation CARs capable of overcoming this newly discovered mechanism of resistance. Disclosures Majzner: Xyphos Biopharma: Consultancy; Zai Lab: Consultancy; Lyell Immunopharma: Consultancy; GammaDelta Therapeutics: Membership on an entity's Board of Directors or advisory committees; Aprotum Group: Consultancy; Illumina Radiopharmaceuticals: Consultancy. Kurtz:Roche: Consultancy; Genentech: Consultancy; Foresight Diagnostics: Other: Ownership. Sotillo:Lyell Immunopharma: Consultancy, Other: Consultancy. Alizadeh:Janssen: Consultancy; Genentech: Consultancy; Pharmacyclics: Consultancy; Chugai: Consultancy; Celgene: Consultancy; Gilead: Consultancy; Roche: Consultancy; Pfizer: Research Funding. Miklos:Miltenyi Biotec: Research Funding; Janssen: Consultancy, Other: Travel support; Pharmacyclics: Consultancy, Other: Travel support, Patents & Royalties, Research Funding; Novartis: Consultancy, Other: Travel support, Research Funding; Allogene Therapeutics Inc.: Research Funding; Juno-Celgene-Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding; Kite-Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding; Adaptive Biotech: Consultancy, Other: Travel support, Research Funding. Mackall:BMS: Consultancy; Allogene: Current equity holder in publicly-traded company; Apricity Health: Consultancy, Current equity holder in private company; Nektar Therapeutics: Consultancy; NeoImmune Tech: Consultancy; Lyell Immunopharma: Consultancy, Current equity holder in private company.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 10, No. 5 ( 2020-05-01), p. 702-723
    Abstract: Insufficient reactivity against cells with low antigen density has emerged as an important cause of chimeric antigen receptor (CAR) T-cell resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and that the CAR construct in axicabtagene ciloleucel (CD19-CD28ζ) outperforms that in tisagenlecleucel (CD19-4-1BBζ) against antigen-low tumors. Enhancing signal strength by including additional immunoreceptor tyrosine-based activation motifs (ITAM) in the CAR enables recognition of low-antigen-density cells, whereas ITAM deletions blunt signal and increase the antigen density threshold. Furthermore, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BBζ CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunologic synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BBζ-CARs with enhanced capacity to recognize antigen-low targets while retaining a superior capacity for persistence. Significance: Optimal CAR T-cell activity is dependent on antigen density, which is variable in many cancers, including lymphoma and solid tumors. CD28ζ-CARs outperform 4-1BBζ-CARs when antigen density is low. However, 4-1BBζ-CARs can be reengineered to enhance activity against low-antigen-density tumors while maintaining their unique capacity for persistence. This article is highlighted in the In This Issue feature, p. 627
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. PR07-PR07
    Abstract: The use of anti-GD2 antibodies for neuroblastoma (NBL) has resulted in enhanced survival, but many patients still relapse and ultimately die of their disease. Additionally, despite expression of GD2 on osteosarcoma (OS), anti-GD2 antibodies have not proven widely effective in that disease. Enhancing the efficacy of anti-GD2 antibodies could result in improved patient outcomes. CD47 is the dominant “Don’t Eat Me” signal expressed by cancer cells to inhibit macrophage phagocytosis. Blocking CD47 with antibodies leads to phagocytosis of tumor cells. A recent trial of anti-CD47 combined with rituximab (anti-CD20) resulted in a high complete response rate in patients with B-cell lymphoma. Using the same rationale, that disinhibiting a macrophage in the presence of a tumor-targeting antibody would result in enhanced antitumor activity, we studied the combination of CD47 blockade with dinutuximab, an FDA-approved antibody targeting GD2. We found a striking synergy between dinutuximab and anti-CD47 in vivo. This combination led to the complete clearance of both orthotopic and metastatic models of NBL. Additionally, the combination significantly delayed the growth of OS xenografts, resulting in enhanced survival, whereas single-agent anti-GD2 or anti-CD47 had no antitumor activity. Finally, in a murine model of metastatic pulmonary OS, the combination of anti-GD2/CD47 led to a near elimination of all metastatic burden. To understand the biologic basis for the synergistic effects observed, we studied both the effects of GD2 crosslinking on tumor cells and the effects of GD2 blockade on macrophages. When NBL cells are treated with dinutuximab in vitro, approximately 50% of the cells die, and those that survive upregulate surface calreticulin, an important prophagocytic (“Eat Me”) signal that stimulates macrophages to remove dying cells. Therefore, GD2 ligation results in cellular processes that drive macrophages to phagocytose tumors. We measured in vitro phagocytosis of NBL cells and observed a synergistic effect in the presence of anti-GD2/CD47 compared to the single agents. However, when we combined anti-CD47 with a tumor-specific antibody recognizing B7-H3, there was no synergy. We therefore hypothesized that GD2 itself is inhibitory to macrophages. Indeed, we produced an anti-GD2 Fab and, simply by blocking GD2, we observed increased phagocytosis of tumor cells. Further, we have identified the ligand for GD2, a molecule expressed on macrophages known to inhibit phagocytosis. Therefore, GD2 is a macrophage checkpoint capable of suppressing tumor cell phagocytosis. In summary, we have identified a novel combination of anti-GD2 and anti-CD47 antibodies that is highly effective in xenograft models of NBL and OS and will soon be tested in children. Additionally, we have shown that GD2 itself is a macrophage checkpoint or “Don’t Eat Me” signal. This finding may explain the high levels of GD2 expressed on NBL and OS as a mechanism for immune evasion. This abstract is also being presented as Poster A73. Citation Format: Johanna Theruvath, Benjie Smith, Miles H. Linde, Elena Sotillo, Sabine Heitzeneder, Kristopher Marjon, Aidan Tousley, Jake Lattin, Allison Banuelos, Shaurya Dhingra, Surya Murty, Crystal L. Mackall, Robbie G. Majzner. GD2 is a macrophage checkpoint molecule and combined GD2/CD47 blockade results in synergistic effects and tumor clearance in xenograft models of neuroblastoma and osteosarcoma [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr PR07.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...