GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Glaciology, Cambridge University Press (CUP), Vol. 67, No. 264 ( 2021-08), p. 685-696
    Abstract: Global warming is causing glaciers in the Caucasus Mountains and around the world to lose mass at an accelerated pace. As a result of this rapid retreat, significant parts of the glacierized surface area can be covered with debris deposits, often making them indistinguishable from the surrounding land surface by optical remote-sensing systems. Here, we present the DebCovG-carto toolbox to delineate debris-covered and debris-free glacier surfaces from non-glacierized regions. The algorithm uses synthetic aperture radar-derived coherence images and the normalized difference snow index applied to optical satellite data. Validating the remotely-sensed boundaries of Ushba and Chalaati glaciers using field GPS data demonstrates that the use of pairs of Sentinel-1 images (2019) from identical ascending and descending orbits can substantially improve debris-covered glacier surface detection. The DebCovG-carto toolbox leverages multiple orbits to automate the mapping of debris-covered glacier surfaces. This new automatic method offers the possibility of quickly correcting glacier mapping errors caused by the presence of debris and makes automatic mapping of glacierized surfaces considerably faster than the use of other subjective methods.
    Type of Medium: Online Resource
    ISSN: 0022-1430 , 1727-5652
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2140541-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Landslides Vol. 20, No. 9 ( 2023-09), p. 1883-1892
    In: Landslides, Springer Science and Business Media LLC, Vol. 20, No. 9 ( 2023-09), p. 1883-1892
    Abstract: Landslide deposits preserved in the geological record afford opportunities to better inform hillslope and seismic hazard and risk models, particularly in regions where observational records are short. In the Southern Alps of New Zealand, small coseismic landslides are frequent, but the geological record preserves several instances of more substantial ( 〉  1 km 3 ) but infrequent mass failures. With an estimated volume of 27 km 3 , the giant Green Lake Landslide represents one of the largest subaerial landslides on Earth. Previous work has suggested this deep-seated mass movement was most likely triggered by high-intensity seismic shaking, but that local structural weakness and/or glacial debuttressing may help to explain the anomalously large failure volume. Resolving the potential contribution of the latter is important given predictions concerning alpine deglaciation in the coming decades to centuries. Key to resolution are secure chronologies of landslide emplacement and past glacier change. Here we present in situ cosmogenic 10 Be exposure ages from the Green Lake Landslide that suggest an emplacement age of 15.5 ± 0.7 ka. Recent work shows that glacial retreat in the region was underway by 19 ka, indicating that the Green Lake Landslide was emplaced 3–4 kyr after the onset of glacier retreat. Given the geometry of the former confining valley glacier, we expect that the deglaciation-landslide age gap is closer to the upper end of this estimate. If correct, this conclusion places greater weight on the roles of local geological structure and/or a great earthquake as factors contributing to the exceptionally large volume of this event.
    Type of Medium: Online Resource
    ISSN: 1612-510X , 1612-5118
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2141883-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  The Cryosphere Vol. 14, No. 2 ( 2020-02-13), p. 585-598
    In: The Cryosphere, Copernicus GmbH, Vol. 14, No. 2 ( 2020-02-13), p. 585-598
    Abstract: Abstract. Knowledge of supra-glacial debris cover and its changes remain incomplete in the Greater Caucasus, in spite of recent glacier studies. Here we present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on Landsat and SPOT images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The accuracy of the results was assessed by using high-resolution Google Earth imagery and GPS data for selected glaciers. From 1986 to 2014, the total glacier area decreased from 691.5±29.0 to 590.0±25.8 km2 (15.8±4.1 %, or ∼0.52 % yr−1), while the clean-ice area reduced from 643.2±25.9 to 511.0±20.9 km2 (20.1±4.0 %, or ∼0.73 % yr−1). In contrast supra-glacial debris cover increased from 7.0±6.4 %, or 48.3±3.1 km2, in 1986 to 13.4±6.2 % (∼0.22 % yr−1), or 79.0±4.9 km2, in 2014. Debris-free glaciers exhibited higher area and length reductions than debris-covered glaciers. The distribution of the supra-glacial debris cover differs between the northern and southern and between the western, central and eastern Greater Caucasus. The observed increase in supra-glacial debris cover is significantly stronger on the northern slopes. Overall, we have observed up-glacier average migration of supra-glacial debris cover from about 3015 to 3130 m a.s.l. (metres above sea level) during the investigated period.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  The Cryosphere Vol. 10, No. 2 ( 2016-03-21), p. 713-725
    In: The Cryosphere, Copernicus GmbH, Vol. 10, No. 2 ( 2016-03-21), p. 713-725
    Abstract: Abstract. Changes in the area and number of glaciers in the Georgian Caucasus Mountains were examined over the last century, by comparing recent Landsat and ASTER images (2014) with older topographical maps (1911, 1960) along with middle and high mountain meteorological stations data. Total glacier area decreased by 8.1 ± 1.8 % (0.2 ± 0.04 % yr−1) or by 49.9 ± 10.6 km2 from 613.6 ± 9.8 km2 to 563.7 ± 11.3 km2 during 1911–1960, while the number of glaciers increased from 515 to 786. During 1960–2014, the total ice area decreased by 36.9 ± 2.2 % (0.7 ± 0.04 % yr−1) or by 207.9 ± 9.8 km2 from 563.7 ± 11.3 km2 to 355.8 ± 8.3 km2, while glacier numbers decreased from 786 to 637. In total, the area of Georgia glaciers reduced by 42.0 ± 2.0 % (0.4 ± 0.02 % yr−1) between 1911 and 2014. The eastern Caucasus section had the highest retreat rate of 67.3 ± 2.0 % (0.7 ± 0.02 % yr−1) over this period, while the central part of Georgian Caucasus had the lowest, 34.6 ± 1.8 % (0.3 ± 0.01 % yr−1), with the western Caucasus intermediate at 42.8 ± 2.7 % (0.4 ± 0.03 % yr−1).
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  The Cryosphere Vol. 12, No. 1 ( 2018-01-10), p. 81-94
    In: The Cryosphere, Copernicus GmbH, Vol. 12, No. 1 ( 2018-01-10), p. 81-94
    Abstract: Abstract. There have been numerous studies of glaciers in the Greater Caucasus, but none that have generated a modern glacier database across the whole mountain range. Here, we present an updated and expanded glacier inventory at three time periods (1960, 1986, 2014) covering the entire Greater Caucasus. Large-scale topographic maps and satellite imagery (Corona, Landsat 5, Landsat 8 and ASTER) were used to conduct a remote-sensing survey of glacier change, and the 30 m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM; 17 November 2011) was used to determine the aspect, slope and height distribution of glaciers. Glacier margins were mapped manually and reveal that in 1960 the mountains contained 2349 glaciers with a total glacier surface area of 1674.9 ± 70.4 km2. By 1986, glacier surface area had decreased to 1482.1 ± 64.4 km2 (2209 glaciers), and by 2014 to 1193.2 ± 54.0 km2 (2020 glaciers). This represents a 28.8 ± 4.4 % (481 ± 21.2 km2) or 0.53 % yr−1 reduction in total glacier surface area between 1960 and 2014 and an increase in the rate of area loss since 1986 (0.69 % yr−1) compared to 1960–1986 (0.44 % yr−1). Glacier mean size decreased from 0.70 km2 in 1960 to 0.66 km2 in 1986 and to 0.57 km2 in 2014. This new glacier inventory has been submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used as a basis data set for future studies.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Science Publishing Group ; 2015
    In:  American Journal of Environmental Protection Vol. 4, No. 3 ( 2015), p. 22-
    In: American Journal of Environmental Protection, Science Publishing Group, Vol. 4, No. 3 ( 2015), p. 22-
    Type of Medium: Online Resource
    ISSN: 2328-5680
    Language: English
    Publisher: Science Publishing Group
    Publication Date: 2015
    detail.hit.zdb_id: 2725725-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Informa UK Limited ; 2023
    In:  Journal of Maps Vol. 19, No. 1 ( 2023-12-31)
    In: Journal of Maps, Informa UK Limited, Vol. 19, No. 1 ( 2023-12-31)
    Type of Medium: Online Resource
    ISSN: 1744-5647
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2176732-4
    SSG: 14,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Scientific Research Publishing, Inc. ; 2015
    In:  Natural Science Vol. 07, No. 03 ( 2015), p. 151-157
    In: Natural Science, Scientific Research Publishing, Inc., Vol. 07, No. 03 ( 2015), p. 151-157
    Type of Medium: Online Resource
    ISSN: 2150-4091 , 2150-4105
    Language: Unknown
    Publisher: Scientific Research Publishing, Inc.
    Publication Date: 2015
    detail.hit.zdb_id: 2571192-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Geosciences Vol. 13, No. 4 ( 2023-04-13), p. 117-
    In: Geosciences, MDPI AG, Vol. 13, No. 4 ( 2023-04-13), p. 117-
    Abstract: Rock glaciers are an integral part of the periglacial environment. At the regional scale in the Greater Caucasus, there have been no comprehensive systematic efforts to assess the distribution of rock glaciers, although some individual parts of ranges have been mapped before. In this study we produce the first inventory of rock glaciers from the entire Greater Caucasus region—Russia, Georgia, and Azerbaijan. A remote sensing survey was conducted using Geo-Information System (GIS) and Google Earth Pro software based on high-resolution satellite imagery—SPOT, Worldview, QuickBird, and IKONOS, based on data obtained during the period 2004–2021. Sentinel-2 imagery from the year 2020 was also used as a supplementary source. The ASTER GDEM (2011) was used to determine location, elevation, and slope for all rock glaciers. Using a manual approach to digitize rock glaciers, we discovered that the mountain range contains 1461 rock glaciers with a total area of 297.8 ± 23.0 km2. Visual inspection of the morphology suggests that 1018 rock glaciers with a total area of 199.6 ± 15.9 km2 (67% of the total rock glacier area) are active, while the remaining rock glaciers appear to be relict. The average maximum altitude of all rock glaciers is found at 3152 ± 96 m above sea level (a.s.l.) while the mean and minimum altitude are 3009 ± 91 m and 2882 ± 87 m a.s.l., respectively. We find that the average minimum altitude of active rock glaciers is higher (2955 ± 98 m a.s.l.) than in relict rock glaciers (2716 ± 83 m a.s.l.). No clear difference is discernible between the surface slope of active (41.4 ± 3°) and relict (38.8 ± 4°) rock glaciers in the entire mountain region. This inventory provides a database for understanding the extent of permafrost in the Greater Caucasus and is an important basis for further research of geomorphology and palaeoglaciology in this region. The inventory will be submitted to the Global Land Ice Measurements from Space (GLIMS) database and can be used for future studies.
    Type of Medium: Online Resource
    ISSN: 2076-3263
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2655946-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Research Centre for Astronomy and Earth Sciences ; 2019
    In:  Hungarian Geographical Bulletin ( 2019-04-04), p. 21-35
    In: Hungarian Geographical Bulletin, Research Centre for Astronomy and Earth Sciences, ( 2019-04-04), p. 21-35
    Type of Medium: Online Resource
    ISSN: 2064-5031 , 2064-5147
    Language: Unknown
    Publisher: Research Centre for Astronomy and Earth Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 2648269-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...