GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 173-173
    Abstract: MALT1 inhibition is a promising strategy against B-cell receptor (BCR)-dependent lymphomas including ABC DLBCL, CLL and MCL. MALT1 is downstream of the most frequently mutated genes in the BCR and Toll-like receptor (TLR) pathways. MALT1 inhibitors are active in Ibrutinib-resistant BTK and PLCγ2 mutant CLL or CARD11 mutant ABC DLBCL. Therefore, MALT1 inhibitors, which recently began first in man clinical testing, have the potential to cover a larger patient population than drugs against more upstream targets in the BCR pathway including BTK inhibitors. However, activity of inhibitors targeting signaling mediators can be limited by feedback mechanisms counteracting and/or bypassing the need for a specific pathway. MALT1 is central to NF-κB activation downstream of the BCR. Therefore, activation of alternative pathways leading to full or partial activation of the BCR program or other pro-survival pathways might enable cell survival and set off MALT1i resistance. In order to map the landscape of resistance/sensitivity to MALT1 inhibition in ABC DLBCL and assist design of combinatorial regimens, we carried out a loss-of-function screen in HBL-1 (MALT1i sensitive) with or without MI-2 (small molecule irreversible inhibitor of MALT1) to identify genes capable of modulating response to MALT1 inhibition. Our analyses showed that loss of BCR and PI3K activators enhanced sensitivity, while loss of negative regulators of these pathways promoted MALT1i resistance. These findings were validated by knockdown of individual genes with two independent hairpins against activators CD79B, CARD11, BTK or the negative regulator TNFAIP3. Next, we carried out a combinatorial drug screen anchored in MALT1 inhibition by MI-2 or C3 (irreversible substrate-mimetic MALT1 inhibitor) and focused on inhibitors against signaling hubs in the BCR/PI3K pathways in 4 MALT1i sensitive cell lines. This combinatorial screen confirmed that concurrent inhibition of MALT1 and other BCR and PI3K pathways' proteins is additive (0.9 & gt;CI (combination index) & lt;1.1) or synergistic (CI & lt;0.9). MALT1i combinations with PI3K and MTORC1 inhibitors were the most highly synergistic, mean CI & lt;0.5 for 2 MALT1 inhibitors and 4 cell lines, and were further pursued. In depth analysis of proliferation and cell death by CFSE dilution and Annexin V staining revealed that both MALT1/PI3K-i and MALT1/MTORC1-i combinations significantly enhanced growth inhibition and apoptosis in TMD8 and HBL-1 compared to individual agents. Results with MI-2 and C3 were comparable. Short exposure to MI-2 or C3 increased MTORC1 activity as assessed by S6K-Thr389 and S6-Ser235/6 phosphorylation in TMD8 and HBL-1 indicating that MALT1 protease activity modulates MTORC1 activation. MTOR activation is tumorigenic and can mediate chemotherapy resistance. Increased p-S6 following MALT1 inhibition (FC=1.4-2) was blocked by Idelalisib (PI3Ki). However, only Rapamycin, an MTORC1 inhibitor, reduced p-S6 levels relative to vehicle, FC=-5 alone or in combination. In vivo, MALT1/PI3K-i (MI-2/Idelalisib) significantly delayed tumor progression compared to single treatments (p & lt;0.01). In contrast, MALT1/MTORC1-i (MI-2/Rapamycin) promoted tumor regression and significantly improved survival of xenografted mice (median survival 37 days vs 18.5 or 29 days for MI-2 or Rapamycin respectively, p & lt;0.001). Tumors from MI-2/Idelalisib treated mice showed 15-fold increase in p-S6 at 21 days. Short exposure to MI-2 in vivo inhibited MALT1 activity over its targets BCL10 and Roquin-1 and increased MTORC1 activity over p-S6K-Thr389 (FC=1.5-2) and p-S6-Ser235/6 (FC=2-3) in ABC DLBCL xenografts. Rapamycin, but not Idelalisib, effectively blocked p-S6 (p & lt;0.001). MALT1/MTORC1-i regimens were also highly synergistic in 2 patient-derived xenografted (PDX) ABC DLBCL ex vivo. PDXs were cultured in gelatin/silicate nanoparticle hydrogel 3-D organoids and co-cultured with CD40L expressing cells. Compound pairs were assayed for synergy using 4x4 matrices and growth inhibition evaluated by flow cytometry. Synergy ZIP δ-score ranged 7-14 in 2 specimens for 2 MALT1i. Combined, these results suggest that: 1) MTORC1 activation constitutes a survival feedback mechanism activated after MALT1i treatment that might be leveraged by tumoral cells to evade MALT1 inhibition and, 2) that simultaneous targeting of MTORC1 could improve response and prevent resistance to MALT1 inhibitors. Disclosures Melnick: Constellation: Consultancy; Janssen: Research Funding; Epizyme: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 137, No. 6 ( 2021-02-11), p. 788-800
    Abstract: MALT1 inhibitors are promising therapeutic agents for B-cell lymphomas that are dependent on constitutive or aberrant signaling pathways. However, a potential limitation for signal transduction–targeted therapies is the occurrence of feedback mechanisms that enable escape from the full impact of such drugs. Here, we used a functional genomics screen in activated B-cell–like (ABC) diffuse large B-cell lymphoma (DLBCL) cells treated with a small molecule irreversible inhibitor of MALT1 to identify genes that might confer resistance or enhance the activity of MALT1 inhibition (MALT1i). We find that loss of B-cell receptor (BCR)- and phosphatidylinositol 3-kinase (PI3K)-activating proteins enhanced sensitivity, whereas loss of negative regulators of these pathways (eg, TRAF2, TNFAIP3) promoted resistance. These findings were validated by knockdown of individual genes and a combinatorial drug screen focused on BCR and PI3K pathway–targeting drugs. Among these, the most potent combinatorial effect was observed with PI3Kδ inhibitors against ABC-DLBCLs in vitro and in vivo, but that led to an adaptive increase in phosphorylated S6 and eventual disease progression. Along these lines, MALT1i promoted increased MTORC1 activity and phosphorylation of S6K1-T389 and S6-S235/6, an effect that was only partially blocked by PI3Kδ inhibition in vitro and in vivo. In contrast, simultaneous inhibition of MALT1 and MTORC1 prevented S6 phosphorylation, yielded potent activity against DLBCL cell lines and primary patient specimens, and resulted in more profound tumor regression and significantly improved survival of ABC-DLBCLs in vivo compared with PI3K inhibitors. These findings provide a basis for maximal therapeutic impact of MALT1 inhibitors in the clinic, by disrupting feedback mechanisms that might otherwise limit their efficacy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Cell, Elsevier BV, Vol. 35, No. 6 ( 2019-06), p. 916-931.e9
    Type of Medium: Online Resource
    ISSN: 1535-6108
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2074034-7
    detail.hit.zdb_id: 2078448-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood Cancer Discovery, American Association for Cancer Research (AACR), Vol. 3, No. 1 ( 2022-01-01), p. 50-65
    Abstract: Diffuse large B-cell lymphomas (DLBCL) are broadly dependent on anaplerotic metabolism regulated by mitochondrial SIRT3. Herein we find that translational upregulation of ATF4 is coupled with anaplerotic metabolism in DLBCLs due to nutrient deprivation caused by SIRT3 driving rapid flux of glutamine into the tricarboxylic acid (TCA) cycle. SIRT3 depletion led to ATF4 downregulation and cell death, which was rescued by ectopic ATF4 expression. Mechanistically, ATF4 translation is inhibited in SIRT3-deficient cells due to the increased pools of amino acids derived from compensatory autophagy and decreased glutamine consumption by the TCA cycle. Absence of ATF4 further aggravates this state through downregulation of its target genes, including genes for amino acid biosynthesis and import. Collectively, we identify a SIRT3–ATF4 axis required to maintain survival of DLBCL cells by enabling them to optimize amino acid uptake and utilization. Targeting ATF4 translation can potentiate the cytotoxic effect of SIRT3 inhibitor to DLBCL cells. Significance: We discovered the link between SIRT3 and ATF4 in DLBCL cells, which connected lymphoma amino acid metabolism with ATF4 translation via metabolic stress signals. SIRT3–ATF4 axis is required in DLBCL cells regardless of subtype, which indicates a common metabolic vulnerability in DLBCLs and can serve as a therapeutic target. This article is highlighted in the In This Issue feature, p. 1
    Type of Medium: Online Resource
    ISSN: 2643-3230 , 2643-3249
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 126, No. 9 ( 2016-8-2), p. 3351-3362
    Type of Medium: Online Resource
    ISSN: 0021-9738 , 1558-8238
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2016
    detail.hit.zdb_id: 2018375-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2019
    In:  Blood Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2768-2768
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2768-2768
    Abstract: The polycomb histone methyltransferase protein EZH2 is highly expressed and mutated in approximately 25% of the two most common subtypes of non-Hodgkin's lymphoma: follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). Both of these tumor types originate from germinal center (GC) B-cells, which are highly proliferative cells that form transiently during the T-cell dependent humoral immune response. Wild type EZH2 plays a critical role in the formation of GC B-cells and mutant EZH2 drives malignant transformation of these cells in vivo. These lymphoma-associated mutations of EZH2 are gain-of-function and enhance EZH2 methyltransferase activity, which cause abnormally efficient H3K27me3, enhancing repression of transcription. Of note, EZH2 mutant lymphomas manifest aberrant suppression of antigen presentation pathways, such as loss or reduced expression of MHC-I and MHC-II, and reduced T-cell infiltrates. We show that mice engineered to conditionally express mutant Ezh2Y641F specifically in GC B-cells exhibited massive GC hyperplasia with expansion of the "light zone" -the GC niche where B-cells are selected based on the affinity of their antibodies- and extended follicular dendritic cells network. With chimeric bone marrow transplantation experiments we found that Ezh2Y641F provides a competitive advantage to activated B-cells in seeding and expanding the T-cell dependent GC reaction. Liquid chromatography separation and mass spectrometry of histone tryptic peptides revealed a massive increase in H3K27me3 in Ezh2Y641F GC B-cells, at the expense of a reduction in H3K27me2. Remarkably, we observed increased unmodified and decreased H3K27me1, indicating a loss-of-function mono-methylase activity of Ezh2Y641F. We confirmed an extensive global gain of H3K27me3 by ChIP-seq, with massive spreading of the mark both upstream and downstream TSS. RNA-seq analysis showed differential expression of genes involved in antigen processing and presentation and immune response, suggesting that B-cell selection process is altered in Ezh2Y641F GC light zone. Therefore, we hypothesized that, through an epigenetic mechanism, Ezh2 mutation makes B-cells less dependent of T-cells by aberrantly suppressing genes involved in the immune synapse. Indeed, inhibition of the interaction between TFH and GC B-cell in vivo using anti CD40L antibody, abrogated GC reaction in WT but not in Ezh2Y641F mice. Of note, EZH2 mutant GCs manifest a massive expansion of the follicular dendritic cell network in spite of lack of T-cell dependence, a finding that reflects low grade FL histology. Hence, EZH2 mutant lymphomas might progress due to acquired immune escape, which is a critical consideration when designing precision, tailored immune-therapy regimens. Disclosures Melnick: Constellation: Consultancy; Janssen: Research Funding; Epizyme: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood Advances, American Society of Hematology, Vol. 4, No. 20 ( 2020-10-27), p. 5226-5231
    Abstract: Molecular alterations in the histone methyltransferase EZH2 and the antiapoptotic protein Bcl-2 frequently co-occur in diffuse large B-cell lymphoma (DLBCL). Because DLBCL tumors with these characteristics are likely dependent on both oncogenes, dual targeting of EZH2 and Bcl-2 is a rational therapeutic approach. We hypothesized that EZH2 and Bcl-2 inhibition would be synergistic in DLBCL. To test this, we evaluated the EZH2 inhibitor tazemetostat and the Bcl-2 inhibitor venetoclax in DLBCL cells, 3-dimensional lymphoma organoids, and patient-derived xenografts (PDXs). We found that tazemetostat and venetoclax are synergistic in DLBCL cells and 3-dimensional lymphoma organoids that harbor an EZH2 mutation and an IGH/BCL2 translocation but not in wild-type cells. Tazemetostat treatment results in upregulation of proapoptotic Bcl-2 family members and priming of mitochondria to BH3-mediated apoptosis, which may sensitize cells to venetoclax. The combination of tazemetostat and venetoclax was also synergistic in vivo. In DLBCL PDXs, short-course combination therapy resulted in complete remissions that were durable over time and associated with superior overall survival compared with either drug alone.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. LB014-LB014
    Abstract: Diffuse large B-cell lymphomas (DLBCLs) tolerate various forms of cellular stress associated with their rapid proliferation and depletion of nutrients in their microenvironment. Our previous finding discovered that DLBCLs are broadly dependent mitochondrial SIRT3 as a critical source of non-oncogene addiction in DLBCL. SIRT3 promotes tumorigenesis in DLBCL, where it is required for glutamine fueled anaplerosis, and its loss of function leads to tumor suppressive autophagy. However, it is not known why SIRT3 deficient DLBCL cells are so vulnerable to such metabolic changes and autophagy, which points to potentially novel and critical nutrient regulatory circuits occurring in this disease. We set out to identify downstream signals induced by SIRT3 deficiency in DLBCL cells in order to gain insight into how SIRT3 could interface with nutrient flux stress response pathways to support tumorigenesis of DLBCLs. First, we carried out RNA sequencing study in three DLBCL cell lines representing different subtypes of DLBCLs. The data showed that all SIRT3 deficient DLBCL cells experienced transcriptional inhibitions of ATF4 target genes. We further observed that ATF4 protein was decreased due to the translational inhibition in SIRT3 deficient DLBCL cells, which indicates that ATF4 may play a role downstream of SIRT3 contributing to DLBCL cell proliferation. Secondly, we proved that ATF4 is indeed required to DLBCL cells' proliferation. ATF4 target genes are more expressed in DLBCL tumor cells than normal germinal center B cells. Loss of ATF4 induced proliferation arrest as SIRT3 depletion and over-expression of ATF4 can partially rescue the proliferation and viability inhibited by SIRT3 deficiency. Consistently, we observed that loss of SIRT3 led to ATF4 reduction in the vavP-Bcl2 mouse lymphoma model. Mechanistically, we identified that ATF4 functions downstream of SIRT3 through the metabolic cascade of GDH-TCA cycle-autophagy. GDH and DMKG can rescue the ATF4 protein decreased by SIRT3 depletion. Blockage of autophagy with chloroquine or knocking down ATG5 can also neutralize SIRT3's inhibition on ATF4. Furthermore, we discovered that ATF4's translation is highly sensitive to nutrient/amino acid levels in DLBCL cells as a stress signal for cell survival. However, ATF4 translation failed to respond to glutamine starvation in SIRT3 depleted DLBCL cells. SIRT3 deficiency underwent drastic changes of amino acid levels because of the TCA cycle inhibition and autophagy activation, which interfered the ATF4's translation and can lead to deleterious metabolic stresses. Collectively, we identify a novel SIRT3-ATF4 axis required to maintain survival of DLBCL cells by enabling them to optimize amino acid utilization. Lack of this coordination is lethal to DLBCL cells, exposing a critical and exploitable metabolic vulnerability. Citation Format: Meng Li, Matthew R. Teater, Jun Young Hong, Cihangir Duy, Hao Shen, Ling Wang, Zhengming Chen, Leandro Cerchietti, Hening Lin, Ari Melnick. Translational activation of ATF4 through mitochondrial anaplerotic metabolic pathways is required for DLBCL growth and survival [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB014.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood Cancer Discovery, American Association for Cancer Research (AACR), Vol. 1, No. 3_Supplement ( 2020-11-01), p. PO-53-PO-53
    Abstract: Molecular alterations in the histone methyltransferase EZH2 and the antiapoptotic protein BCL2 frequently co-occur in diffuse large B-cell lymphoma (DLBCL). We hypothesized that EZH2 inhibition and BCL2 inhibition would be synergistic in DLBCL. To test this, we evaluated the EZH2 inhibitor tazemetostat and the BCL2 inhibitor venetoclax in DLBCL cells, 3D lymphoma organoids, and patient-derived xenografts (PDXs). We found that tazemetostat and venetoclax are synergistic in DLBCL cells that harbor both an EZH2 mutation and a BCL2/IGH translocation, as demonstrated by CI values & lt;1 (CI: 0.034, 0.259 and 0.074 in SUDHL-6, WSU-DLCL2, and OCI-Ly1 respectively), but not in wild-type cells. Since cell lines in suspension do not reflect lymph node architecture, we developed a 3D lymphoma organoid culture system that consists of extracellular matrix, lymphoma cells, and stromal cells (Tian et al., Biomaterials 2015). We observed synergy between the two agents in two organoid model systems: 1) OCI-LY1; 2) PDX derived from a DLBCL with BCL2/IGH translocation and EZH2 mutation. To investigate mechanisms of synergy, we evaluated previously published RNA-seq profiles of DLBCL cell lines (n=26) treated with vehicle or tazemetostat to investigate changes in BCL2 family members (Brach et al., Mol Can Ther 2017). Tazemetostat-treated cells showed enhanced expression of proapoptotic BCL2 family members including BCL2L11 (p=0.012), BMF (p & lt;0.001), and BCL2L14 (p=0.002), suggesting that these may be direct or indirect EZH2 target genes that are de-repressed upon EZH2 inhibition. To assess mitochondrial priming to apoptosis as a result of EZH2 inhibition, we performed BH3 profiling of DLBCL PDX organoids treated with vehicle vs. tazemetostat. Tazemetostat-treated cells had increased priming as evidenced by cytochrome c release in response to general apoptotic signaling peptides BIM and PUMA (p & lt;0.0001) and to the BCL2 specific peptide BAD (p & lt;0.0001), suggesting that pretreatment with tazemetostat increases mitochondrial sensitivity to BCL2 inhibition. We next evaluated combination therapy in vivo. In SUDHL-6 xenografts, the combination resulted in attenuation of tumor growth compared to either drug alone (combination vs. venetoclax p & lt;0.0001, combination vs. tazemetostat p=0.0004) and improved overall survival. In DLBCL PDXs, combination therapy resulted in complete resolutions of tumors, which were durable over time and associated with improved overall survival. Strikingly, after 197 days of follow-up there was no detectable disease in any combination-treated animal. In summary, we demonstrate that combined BCL2 and EZH2 inhibition results in synergistic anti-lymphoma effects. We expect this combination to be especially effective as precision therapy for the newly identified cluster 3/EZB DLBCL subtype, which frequently harbors both EZH2 and BCL2 alterations. A clinical trial of this combination is currently in development. Citation Format: Hanna Scholze, Regan E. Stephenson, Raymond Reynolds, Shivem Shah, Rishi Puri, Matthew R. Teater, Herman van Besien, Destini Gibbs-Curtis, Hideki Ueno, Salma Parvin, Anthony G. Letai, Susan Mathew, Ankur Singh, Ethel Cesarman, Ari Melnick, Lisa Giulino-Roth. Combined EZH2 and BCL2 inhibitors as precision therapy for genetically defined DLBCL subtypes [abstract]. In: Proceedings of the AACR Virtual Meeting: Advances in Malignant Lymphoma; 2020 Aug 17-19. Philadelphia (PA): AACR; Blood Cancer Discov 2020;1(3_Suppl):Abstract nr PO-53.
    Type of Medium: Online Resource
    ISSN: 2643-3230 , 2643-3249
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Cell, Elsevier BV, Vol. 80, No. 5 ( 2020-12), p. 845-861.e10
    Type of Medium: Online Resource
    ISSN: 1097-2765
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2001948-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...