GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Fungi, MDPI AG, Vol. 9, No. 4 ( 2023-04-10), p. 460-
    Abstract: Mature tropical urban trees are susceptible to root and trunk rot caused by pathogenic fungi. A metagenomic survey of such fungi was carried out on 210 soil and tissue samples collected from 134 trees of 14 common species in Singapore. Furthermore, 121 fruiting bodies were collected and barcoded. Out of the 22,067 OTUs (operational taxonomic units) identified, 10,646 OTUs had annotation information, and most were either ascomycetes (63.4%) or basidiomycetes (22.5%). Based on their detection in the diseased tissues and surrounding soils and/or the presence of fruiting bodies, fourteen basidiomycetes (nine Polyporales, four Hymenochaetales, one Boletales) and three ascomycetes (three species of Scytalidium) were strongly associated with the diseased trees. Fulvifomes siamensis affected the largest number of tree species surveyed. The association of three fungi was further supported by in vitro wood decay studies. Genetic heterogeneity was common in the diseased tissues and fruiting bodies (Ganoderma species especially). This survey identified the common pathogenic fungi of tropical urban trees and laid the foundation for early diagnosis and targeted mitigation efforts. It also illustrated the complexity of fungal ecology and pathogenicity.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Sensors, MDPI AG, Vol. 23, No. 9 ( 2023-05-06), p. 4538-
    Abstract: Wood rot fungus Fulvifomes siamensis infects multiple urban tree species commonly planted in Singapore. A commercial e-nose (Cyranose 320) was used to differentiate some plant and fungi volatiles. The e-nose distinctly clustered the volatiles at 0.25 ppm, and this sensitivity was further increased to 0.05 ppm with the use of nitrogen gas to purge the system and set up the baseline. Nitrogen gas baseline resulted in a higher magnitude of sensor responses and a higher number of responsive sensors. The specificity of the e-nose for F. siamensis was demonstrated by distinctive clustering of its pure culture, fruiting bodies collected from different tree species, and in diseased tissues infected by F. siamensis with a 15-min incubation time. This good specificity was supported by the unique volatile profiles revealed by SPME GC-MS analysis, which also identified the signature volatile for F. siamensis—1,2,4,5-tetrachloro-3,6-dimethoxybenzene. In field conditions, the e-nose successfully identified F. siamensis fruiting bodies on different tree species. The findings of concentration-based clustering and host-tree-specific volatile profiles for fruiting bodies provide further insights into the complexity of volatile-based diagnosis that should be taken into consideration for future studies.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Fungi, MDPI AG, Vol. 9, No. 6 ( 2023-06-15), p. 675-
    Abstract: Pathogenic root/wood rot fungal species infect multiple urban tree species in Singapore. There is a need for sustainable and environmentally friendly mitigation. We report the local Trichoderma strains as potential biocontrol agents (BCAs) for pathogenic wood rot fungal species such as Phellinus noxius, Rigidoporus microporus, and Fulvifomes siamensis. Isolated Trichoderma strains were DNA-barcoded for their molecular identities and assessed for their potential as a BCA by their rate of growth in culture and effectiveness in inhibiting the pathogenic fungi in in vitro dual culture assays. Trichoderma harzianum strain CE92 was the most effective in inhibiting the growth of the pathogenic fungi tested. Preliminary results suggested both volatile organic compound (VOC) production and direct hyphal contact contributed to inhibition. SPME GC-MS identified known fungal inhibitory volatiles. Trichoderma harzianum strain CE92 hyphae were found to coil around Phellinus noxius and Lasiodiplodia theobromae upon contact in vitro and were possibly a part of the mycoparasitism. In summary, the work provides insight into Trichoderma inhibition of pathogenic fungi and identifies local strains with good potential for broad-spectrum BCAs against root/wood rot fungi in Singapore.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...