GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Biomedicines Vol. 11, No. 4 ( 2023-04-19), p. 1215-
    In: Biomedicines, MDPI AG, Vol. 11, No. 4 ( 2023-04-19), p. 1215-
    Abstract: For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs. At the same time, amyloidogenic PPs have various useful properties. For example, they may render neurons resistant to viral infection and propagation and stimulate autophagy. We discuss here some of amyloidogenic PPs’ detrimental and beneficial properties using as examples beta-amyloid (β-amyloid), implicated in the pathogenesis of Alzheimer’s disease (AD), and α-synuclein—one of the hallmarks of Parkinson’s disease (PD). Recently amyloidogenic PPs’ antiviral and antimicrobial properties have attracted attention because of the COVID-19 pandemic and the growing threat of other viral and bacterial-induced diseases. Importantly, several COVID-19 viral proteins, e.g., spike, nucleocapsid, and envelope proteins, may become amyloidogenic after infection and combine their harmful action with the effect of endogenous APPs. A central area of current investigations is the study of the structural properties of amyloidogenic PPs, defining their beneficial and harmful properties, and identifying triggers that transform physiologically important amyloidogenic PPs into vicious substances. These directions are of paramount importance during the current SARS-CoV-2 global health crisis.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cell, Elsevier BV, Vol. 165, No. 2 ( 2016-04), p. 434-448
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Neuroscience Research Vol. 97, No. 5 ( 2019-05), p. 539-542
    In: Journal of Neuroscience Research, Wiley, Vol. 97, No. 5 ( 2019-05), p. 539-542
    Type of Medium: Online Resource
    ISSN: 0360-4012 , 1097-4547
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1474904-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2017
    In:  Frontiers in Molecular Neuroscience Vol. 10 ( 2017-07-13)
    In: Frontiers in Molecular Neuroscience, Frontiers Media SA, Vol. 10 ( 2017-07-13)
    Type of Medium: Online Resource
    ISSN: 1662-5099
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2452967-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Biomolecules Vol. 11, No. 5 ( 2021-04-22), p. 624-
    In: Biomolecules, MDPI AG, Vol. 11, No. 5 ( 2021-04-22), p. 624-
    Abstract: Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein aggregates in neurons, nerve fibers or glial cells. Three main types of diseases belong to the synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. All of them develop as a result of an interplay of genetic and environmental factors. Emerging evidence suggests that epigenetic mechanisms play an essential role in the development of synucleinopathies. Since there is no disease-modifying treatment for these disorders at this time, interest is growing in plant-derived chemicals as a potential treatment option. Phytochemicals are substances of plant origin that possess biological activity, which might have effects on human health. Phytochemicals with neuroprotective activity target different elements in pathogenic pathways due to their antioxidants, anti-inflammatory, and antiapoptotic properties, and ability to reduce cellular stress. Multiple recent studies demonstrate that the beneficial effects of phytochemicals may be explained by their ability to modulate the expression of genes implicated in synucleinopathies and other diseases. These substances may regulate transcription directly via transcription factors (TFs) or play the role of epigenetic regulators through their effect on histone modification, DNA methylation, and RNA-based mechanisms. Here, we summarize new data about the impact of phytochemicals on the pathogenesis of synucleinopathies through regulation of gene expression.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2701262-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Biology Vol. 8, No. 2 ( 2019-05-24), p. 43-
    In: Biology, MDPI AG, Vol. 8, No. 2 ( 2019-05-24), p. 43-
    Abstract: The variety of lifespans of different organisms in nature is amazing. Although it is acknowledged that the longevity is determined by a complex interaction between hereditary and environmental factors, many questions about factors defining lifespan remain open. One of them concerns a wide range of lifespans of different organisms. The reason for the longevity of certain trees, which reaches a thousand years and exceeds the lifespan of most long living vertebrates by a huge margin is also not completely understood. Here we have discussed some distinguishing characteristics of plants, which may explain their remarkable longevity. Among them are the absence (or very low abundance) of intracellular inclusions composed of amyloidogenic proteins, the lack of certain groups of proteins prone to aggregate and form amyloids in animals, and the high level of compounds which inhibit protein aggregation and possess antiaging properties.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Molecules Vol. 24, No. 2 ( 2019-01-15), p. 305-
    In: Molecules, MDPI AG, Vol. 24, No. 2 ( 2019-01-15), p. 305-
    Abstract: Synucleins are small naturally unfolded proteins involved in neurodegenerative diseases and cancer. The family contains three members: α-, β-, and -synuclein. α-Synuclein is the most thoroughly investigated because of its close association with Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy. Until recently, the synuclein's research was mainly focused on their intracellular forms. However, new studies highlighted the important role of extracellular synucleins. Extracellular forms of synucleins propagate between various types of cells, bind to cell surface receptors and transmit signals, regulating numerous intracellular processes. Here we give an update of the latest results about the mechanisms of action of extracellular synucleins, their binding to cell surface receptors, effect on biochemical pathways and the role in neurodegeneration and neuroinflammation.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Brain Sciences Vol. 10, No. 2 ( 2020-02-22), p. 121-
    In: Brain Sciences, MDPI AG, Vol. 10, No. 2 ( 2020-02-22), p. 121-
    Abstract: Identification of genetic markers of a human disease, which is generally sporadic, may become an essential tool for the investigation of its molecular mechanisms. The role of ABCA7 in Alzheimer’s disease (AD) was discovered less than ten years ago when meta-analyses provided evidence that rs3764650 is a new AD susceptibility locus. Recent research advances in this locus and new evidence regarding ABCA7 contribution to the AD pathogenesis brought a new understanding of the underlying mechanisms of this disorder. An interesting, up-to-date review article "ABCA7 and Pathogenic Pathways of Alzheimer’s Disease" by Aikawa et al. (2018), outlines the ABCA7 role in AD and summarizes new findings in this exciting area. ABC transporters or ATP-binding cassette transporters are a superfamily of proteins belonging to a cell transport system. Currently, members of the family are the focus of attention because of their central role in drug pharmacokinetics. Two recent findings are the reason why much attention is drawn to the ABCA7 family. First, is the biochemical data showing a role of ABCA7 in amyloid pathology. Second, genetic data identifying ABCA7 gene variants as loci responsible for the late-onset AD. These results point to the ABCA7 as a significant new contributor to the pathogenesis of AD.
    Type of Medium: Online Resource
    ISSN: 2076-3425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2651993-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...