GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Physical Oceanography Vol. 48, No. 1 ( 2018-01), p. 123-143
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 48, No. 1 ( 2018-01), p. 123-143
    Abstract: Moored observations of temperature and current were collected on the inner continental shelf off Point Sal, California, between 9 June and 8 August 2015. The measurements consist of 10 moorings in total: 4 moorings each on the 50- and 30-m isobaths covering a 10-km along-shelf distance and an across-shelf section of moorings on the 50-, 40-, 30-, and 20-m isobaths covering a 5-km distance. Energetic, highly variable, and strongly dissipating transient wave events termed internal tide bores and internal solitary waves (ISWs) dominate the records. Simple models of the bore and ISW space–time behavior are implemented as a temperature match filter to detect events and estimate wave packet parameters as a function of time and mooring position. Wave-derived quantities include 1) group speed and direction; 2) time of arrival, time duration, vertical displacement amplitude, and waves per day; and 3) energy density, energy flux, and propagation loss. In total, over 1000 bore events and over 9000 ISW events were detected providing well-sampled statistical distributions. Statistics of the waves are rather insensitive to position along shelf but change markedly in the across-shelf direction. Two compelling results are 1) that the probability density functions for bore and ISW energy flux are nearly exponential, suggesting the importance of interference and 2) that wave propagation loss is proportional to energy flux, thus giving an exponential decay of energy flux toward shore with an e -folding scale of 2–2.4 km and average dissipation rates for bores and ISWs of 144 and 1.5 W m −1 , respectively.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Physical Oceanography Vol. 50, No. 9 ( 2020-09-01), p. 2609-2620
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 50, No. 9 ( 2020-09-01), p. 2609-2620
    Abstract: Cross-shore heat flux (CHF) spatiotemporal variability in the subtidal (ST), diurnal (DU), and semidiurnal (SD) bands is described for 35 days (summer 2015) from collocated vertical measures of temperature and currents obtained by moorings deployed from 50- to 7-m water depths near Pt. Sal, California. The CHF is largest in the ST and SD bands, with nearly zero contribution in the DU band. The sum of CHF and surface heat flux (SHF) account for 31% and 17% of the total change in heat storage on the midshelf and inner shelf, respectively. The ST CHF for the midshelf and inner shelf is mostly negative and is correlated with upwelling-favorable winds. A mostly positive SD CHF on the midshelf and inner shelf decreases linearly in the shoreward direction, is correlated with wind relaxations, and is attributed to warm-water internal tidal bores (WITBs) that are observed to propagate to the edge of the surf zone. A negative SD CHF is correlated with upwelling-favorable winds on the midshelf at 15–25-h time lags, and is believed to be associated with cold-water internal tidal bores. The WITBs have characteristics of progressive waves on the midshelf and transition to partially standing waves on the inner shelf potentially reducing the SD CHF contribution on the inner shelf. Heat accumulation over the midshelf and inner shelf is primarily driven by WITBs and SHF, which is largely balanced by cumulative cooling by ST processes over the midshelf and cumulative cooling by alongshore heat flux (AHF) over the inner shelf.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 6 ( 2019-3-26)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Atmospheric and Oceanic Technology Vol. 31, No. 3 ( 2014-03-01), p. 714-728
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 31, No. 3 ( 2014-03-01), p. 714-728
    Abstract: Shore-based video remote sensing is used to observe and continually monitor nonlinear internal waves propagating across the inner shelf. Month-long measurements of velocity from bottom-mounted acoustic Doppler current profilers and temperature from thermistor chains at the 10- and 20-m isobaths are combined with sea surface imagery from a suite of cameras (Argus) to provide a kinematic description of 11 borelike internal waves as they propagate across the central Oregon inner shelf. The surface expression of these waves, commonly seen by eye as alternating rough and smooth bands, are identified by increased pixel intensity in Argus imagery (average width 39 ± 6 m), caused by the convergence of internal wave-driven surface currents. These features are tracked through time and space using 2-min time exposure images and then compared to wave propagation speed and direction from in situ measurements. Internal waves are refracted by bathymetry, and the measured wave speed (~0.15 m s−1) is higher than predicted by linear theory ( & lt;0.1 m s−1). Propagating internal waves are also visible in subsampled Argus pixel time series (hourly collections of 17 min worth of 2-Hz pixel intensity from a subset of locations), thus extending the observational record to times without an in situ presence. Results from this 5-month record show that the preferred sea state for successful video observations occurs for wind speeds of 2–5 m s−1. Continued video measurements and analysis of extensive existing Argus data will allow a statistical estimate of internal wave occurrence at a variety of inner-shelf locations.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 121, No. 10 ( 2016-10), p. 7455-7475
    Abstract: A multinested model reproduces the temperature and current variability at outer and inner‐shelf sites around Pt. Conception Consistent with observations, the modeled response to wind relaxation is a poleward‐propagating, coastally trapped, buoyant plume The model resolves well the differences between offshore and onshore plume dynamics
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2016
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Estuarine, Coastal and Shelf Science, Elsevier BV, Vol. 281 ( 2023-02), p. 108212-
    Type of Medium: Online Resource
    ISSN: 0272-7714
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1466742-3
    detail.hit.zdb_id: 763369-5
    SSG: 21,3
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 16, No. 1 ( 2023-01-09), p. 211-231
    Abstract: Abstract. Here we present the first open-access long-term 3D hydrodynamic ocean hindcast for the New Zealand ocean estate. The 28-year 5 km×5 km resolution free-running ocean model configuration was developed under the umbrella of the Moana Project, using the Regional Ocean Modeling System (ROMS) version 3.9. It includes an improved bathymetry, spectral tidal forcing at the boundaries and inverse-barometer effect usually absent from global simulations. The continuous integration provides a framework to improve our understanding of the ocean dynamics and connectivity, as well as identify long-term trends and drivers for particular processes. The simulation was compared to a series of satellite and in situ observations, including sea surface temperature (SST), sea surface height (SSH), coastal water level and temperature stations, moored temperature time series, and temperature and salinity profiles from the CORA5.2 (Coriolis Ocean database for ReAnalysis) dataset – including Argo floats, XBTs (expendable bathythermographs) and CTD (conductivity–temperature–depth) stations. These comparisons show the model simulation is consistent and represents important ocean processes at different temporal and spatial scales, from local to regional and from a few hours to years including extreme events. The root mean square errors are 0.11 m for SSH, 0.23 ∘C for SST, and 〈1 ∘C and 0.15 g kg−1 for temperature and salinity profiles. Coastal tides are simulated well, and both high skill and correlation are found between modelled and observed sub-tidal sea level and water temperature stations. Moreover, cross-sections of the main currents around New Zealand show the simulation is consistent with transport, velocity structure and variability reported in the available literature. This first multi-decadal, high-resolution, open-access hydrodynamic model represents a significant step forward for ocean sciences in the New Zealand region.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-05-07)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-05-07)
    Abstract: Intra-annual variability in the East Auckland Current (EAuC) was studied using a year-long timeseries of in situ and remotely-sensed velocity, temperature and salinity observations. Satellite-derived velocities correlated well ( $$\hbox {r} 〉 0.75$$ r 〉 0.75 ) with in situ observations and well-represent the long-term ( $$ 〉 30$$ 〉 30 days) variability of the upper ocean circulation. Four mesoscale eddies were observed during the year (for 260 days) which generated distinct flows between the continental slope and rise. The EAuC dominated the circulation in the continental shelf break, slope and rise for 110 days and generated the most energetic events associated with wind forcing. Current variability on the continental slope was coherent with along-slope wind stress (wind stress curl) at periods between 4 and 12 days (16 and 32 days). We suggest that along-slope winds generated offshore Ekman transport, uplift on the shelf-break, and a downwind geostrophic jet on the slope. In contrast, positive wind stress curl caused convergence of water, downwelling, and increased the current speed in the region. Bottom Ekman transport, generated by the EAuC, was suggested to have caused the largest temperature anomaly ( $$-1.5 ^{\circ }\hbox {C}$$ - 1 . 5 ∘ C ) at the continental shelf-break.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Annual Reviews ; 2023
    In:  Annual Review of Marine Science Vol. 15, No. 1 ( 2023-01-16), p. 167-202
    In: Annual Review of Marine Science, Annual Reviews, Vol. 15, No. 1 ( 2023-01-16), p. 167-202
    Abstract: Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior.
    Type of Medium: Online Resource
    ISSN: 1941-1405 , 1941-0611
    URL: Issue
    Language: English
    Publisher: Annual Reviews
    Publication Date: 2023
    detail.hit.zdb_id: 2458404-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2015
    In:  Geophysical Research Letters Vol. 42, No. 13 ( 2015-07-16), p. 5427-5434
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 42, No. 13 ( 2015-07-16), p. 5427-5434
    Abstract: Cross‐shore exchange velocity due to transient rip currents is self‐similar The exchange velocity profile is scaled by incident waves and beach slope Transient rip current exchange exceeds Stokes drift up to six surf zone widths
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...