GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Experimental Hematology, Elsevier BV, Vol. 35, No. 8 ( 2007-08), p. 1201-1208
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2007
    detail.hit.zdb_id: 2005403-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Massachusetts Medical Society ; 1990
    In:  New England Journal of Medicine Vol. 322, No. 5 ( 1990-02), p. 315-317
    In: New England Journal of Medicine, Massachusetts Medical Society, Vol. 322, No. 5 ( 1990-02), p. 315-317
    Type of Medium: Online Resource
    ISSN: 0028-4793 , 1533-4406
    RVK:
    Language: English
    Publisher: Massachusetts Medical Society
    Publication Date: 1990
    detail.hit.zdb_id: 1468837-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 89, No. 1 ( 1997-01-01), p. 155-165
    Abstract: This report examines the effects on hematopoietic regeneration of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF ) (2.5 μg/kg/d) alone and in combination with recombinant human granulocyte colony stimulating factor (rHu-GCSF ) (10 μg/kg/d) for 21 days in rhesus macaques receiving intense marrow suppression produced by single bolus injections of hepsulfam (1.5 g/m2). In six hepsulfam-only control animals thrombocytopenia (platelet count 〈 100 × 109/L) was observed between days 12 and 25 (nadir 39 ± 20 × 109/L on day 17), and neutropenia (absolute neutrophil count 〈 1 × 109/L) occurred between days 8 and 30 (nadir 0.167 ± 0.120 × 109/L on day 15). PEG-rHuMGDF (2.5 μg/kg/d) injected subcutaneously into four animals from day 1 to day 22 following hepsulfam administration produced trough serum concentrations of 1.9 ± 0.2 ng/mL and increased the platelet count twofold over basal prechemotherapy levels (856 ± 594 × 109/L v baseline of 416 ± 88 × 109/L; P = .01). PEG-rHuMGDF alone also shortened the period of posthepsulfam neutropenia from 22 days to 12 days (P = .01), although the neutropenic nadir was not significantly altered (neutrophil count 0.224 ± 0.112 × 109/L v 0.167 ± 0.120 × 109/L; P 〈 .3). rHu-GCSF (10 μg/kg/d) injected subcutaneously into four animals from day 1 to day 22 following hepsulfam administration produced trough serum concentrations of 1.4 ± 1.1 ng/mL, and reduced the time for the postchemotherapy neutrophil count to attain 1 × 109/L from 22 days to 4 days (P = .005). The postchemotherapy neutropenic nadir was 0.554 ± 0.490 × 109neutrophils/L (P = .3 v hepsulfam-only control of 0.167 ± 0.120 × 109/L). However, thrombocytopenia of 〈 100 × 109 platelets/L was not shortened (persisted from day 12 to day 25), or less severe (nadir of 56 ± 32 × 109 platelets/L on day 14; P = .7 compared with untreated hepsulfam animals). The concurrent administration of rHu-GCSF (10 μg/kg/d) and PEG-rHuMGDF (2.5 μg/kg/d) in four animals resulted in postchemotherapy peripheral platelet counts of 127 ± 85 × 109/L (P = .03 compared with 39 ± 20 × 109/L for untreated hepsulfam alone, and P = .02 compared with 856 ± 594 × 109/L for PEG-rHuMGDF alone), and shortened the period of neutropenia 〈 1 × 109/L from 22 days to 4 days (P = .8 compared with rHu-GCSF alone). Increasing PEG-rHuMGDF to 10 μg/kg/d and maintaining the 21-day schedule of coadministration with rHu-GCSF (10 μg/kg/d) in another four animals produced postchemotherapy platelet counts of 509 ± 459 × 109/L (P 〈 10−4compared with untreated hepsulfam alone, and P = .04 compared with 2.5 μg/kg/d PEG-rHuMGDF alone), and 4 days of neutropenia. Coadministration of rHu-GCSF and PEG-rHuMGDF did not significantly alter the pharmacokinetics of either agent. The administration of PEG-rHuMGDF (2.5 μg/kg/d) from day 1 through day 22 and rHu-GCSF (10 μg/kg/d) from day 8 through day 22 in six animals produced peak postchemotherapy platelet counts of 747 ± 317 × 109/L (P 〈 10−4 compared with untreated hepsulfam alone, and P = .7 compared with PEG-rHuMGDF alone), and maintained the neutrophil count 〈 3.5 × 109/L (P = .008 v rHu-GCSF therapy alone). Thus, both thrombocytopenia and neutropenia are eliminated by initiating daily PEG-rHuMGDF therapy on day 1 and subsequently adding daily rHu-GCSF after 1 week in the rhesus model of hepsulfam marrow suppression. This improvement in platelet and neutrophil responses by delaying the addition of rHu-GCSF to PEG-rHuMGDF therapy demonstrates the importance of optimizing the dose and schedule of cytokine combinations after severe myelosuppressive chemotherapy.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1997
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 89, No. 1 ( 1997-01-01), p. 155-165
    Abstract: This report examines the effects on hematopoietic regeneration of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF ) (2.5 μg/kg/d) alone and in combination with recombinant human granulocyte colony stimulating factor (rHu-GCSF ) (10 μg/kg/d) for 21 days in rhesus macaques receiving intense marrow suppression produced by single bolus injections of hepsulfam (1.5 g/m2). In six hepsulfam-only control animals thrombocytopenia (platelet count 〈 100 × 109/L) was observed between days 12 and 25 (nadir 39 ± 20 × 109/L on day 17), and neutropenia (absolute neutrophil count 〈 1 × 109/L) occurred between days 8 and 30 (nadir 0.167 ± 0.120 × 109/L on day 15). PEG-rHuMGDF (2.5 μg/kg/d) injected subcutaneously into four animals from day 1 to day 22 following hepsulfam administration produced trough serum concentrations of 1.9 ± 0.2 ng/mL and increased the platelet count twofold over basal prechemotherapy levels (856 ± 594 × 109/L v baseline of 416 ± 88 × 109/L; P = .01). PEG-rHuMGDF alone also shortened the period of posthepsulfam neutropenia from 22 days to 12 days (P = .01), although the neutropenic nadir was not significantly altered (neutrophil count 0.224 ± 0.112 × 109/L v 0.167 ± 0.120 × 109/L; P 〈 .3). rHu-GCSF (10 μg/kg/d) injected subcutaneously into four animals from day 1 to day 22 following hepsulfam administration produced trough serum concentrations of 1.4 ± 1.1 ng/mL, and reduced the time for the postchemotherapy neutrophil count to attain 1 × 109/L from 22 days to 4 days (P = .005). The postchemotherapy neutropenic nadir was 0.554 ± 0.490 × 109neutrophils/L (P = .3 v hepsulfam-only control of 0.167 ± 0.120 × 109/L). However, thrombocytopenia of 〈 100 × 109 platelets/L was not shortened (persisted from day 12 to day 25), or less severe (nadir of 56 ± 32 × 109 platelets/L on day 14; P = .7 compared with untreated hepsulfam animals). The concurrent administration of rHu-GCSF (10 μg/kg/d) and PEG-rHuMGDF (2.5 μg/kg/d) in four animals resulted in postchemotherapy peripheral platelet counts of 127 ± 85 × 109/L (P = .03 compared with 39 ± 20 × 109/L for untreated hepsulfam alone, and P = .02 compared with 856 ± 594 × 109/L for PEG-rHuMGDF alone), and shortened the period of neutropenia 〈 1 × 109/L from 22 days to 4 days (P = .8 compared with rHu-GCSF alone). Increasing PEG-rHuMGDF to 10 μg/kg/d and maintaining the 21-day schedule of coadministration with rHu-GCSF (10 μg/kg/d) in another four animals produced postchemotherapy platelet counts of 509 ± 459 × 109/L (P 〈 10−4compared with untreated hepsulfam alone, and P = .04 compared with 2.5 μg/kg/d PEG-rHuMGDF alone), and 4 days of neutropenia. Coadministration of rHu-GCSF and PEG-rHuMGDF did not significantly alter the pharmacokinetics of either agent. The administration of PEG-rHuMGDF (2.5 μg/kg/d) from day 1 through day 22 and rHu-GCSF (10 μg/kg/d) from day 8 through day 22 in six animals produced peak postchemotherapy platelet counts of 747 ± 317 × 109/L (P 〈 10−4 compared with untreated hepsulfam alone, and P = .7 compared with PEG-rHuMGDF alone), and maintained the neutrophil count 〈 3.5 × 109/L (P = .008 v rHu-GCSF therapy alone). Thus, both thrombocytopenia and neutropenia are eliminated by initiating daily PEG-rHuMGDF therapy on day 1 and subsequently adding daily rHu-GCSF after 1 week in the rhesus model of hepsulfam marrow suppression. This improvement in platelet and neutrophil responses by delaying the addition of rHu-GCSF to PEG-rHuMGDF therapy demonstrates the importance of optimizing the dose and schedule of cytokine combinations after severe myelosuppressive chemotherapy.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1997
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 12, No. 535 ( 2020-03-18)
    Abstract: Therapeutic cancer vaccines have effectively induced durable regressions of premalignant oncogenic human papilloma virus type 16 (HPV16)–induced anogenital lesions. However, the treatment of HPV16-induced cancers requires appropriate countermeasures to overcome cancer-induced immune suppression. We previously showed that standard-of-care carboplatin/paclitaxel chemotherapy can reduce abnormally high numbers of immunosuppressive myeloid cells in patients, allowing the development of much stronger therapeutic HPV16 vaccine (ISA101)–induced tumor immunity. We now show the clinical effects of ISA101 vaccination during chemotherapy in 77 patients with advanced, recurrent, or metastatic cervical cancer in a dose assessment study of ISA101. Tumor regressions were observed in 43% of 72 evaluable patients. The depletion of myeloid suppressive cells by carboplatin/paclitaxel was associated with detection of low frequency of spontaneous HPV16-specific immunity in 21 of 62 tested patients. Patients mounted type 1 T cell responses to the vaccine across all doses. The group of patients with higher than median vaccine-induced immune responses lived longer, with a flat tail on the survival curve. This demonstrates that chemoimmunotherapy can be exploited to the benefit of patients with advanced cancer based on a defined mode of action.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 91, No. 12 ( 1998-06-15), p. 4427-4433
    Abstract: Three chimpanzees experimentally infected with human immunodeficiency virus (HIV) developed significant chronic thrombocytopenia after 5, 4, and 2 years, with peripheral platelet counts averaging 64 ± 19 × 103/μL (P = .004 compared with 228 ± 92 × 103/μL in 44 normal control animals), mean platelet volumes of 11.2 ± 1.8 fL (P & gt; .5 compared with 10.9 ± 0.7 fL in normal controls), endogenous thrombopoietin (TPO) levels of 926 ± 364 pg/mL (P & lt; .001 compared with 324 ± 256 pg/mL in normal controls), uniformly elevated platelet anti-glycoprotein (GP) IIIa49-66 antibodies, and corresponding viral loads of 534, 260, and 15 × 103 RNA viral copies/mL. Pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) was administered subcutaneously (25 μg/kg twice weekly for 3 doses) to determine the effects of stimulating platelet production on peripheral platelet concentrations in this cohort of thrombocytopenic HIV-infected chimpanzees. PEG-rHuMGDF therapy increased (1) peripheral platelet counts 10-fold (from 64 ± 19 to 599 ± 260 × 103 platelets/μL;P = .02); (2) marrow megakaryocyte numbers 30-fold (from 11.7 ± 6.5 × 106/kg to 353 ± 255 × 106/kg;P = .04); (3) marrow megakaryocyte progenitor cells fourfold (from a mean of 3.6 ± 0.6 to 14.1 × 103 CFU-Meg/1,000 CD34+ marrow cells); and (4) serum levels of Mpl ligand from 926 ± 364 pg/mL (endogenous TPO) to predosing trough levels of 1,840 ± 353 pg/mL PEG-rHuMGDF (P = .02). The peripheral neutrophil counts were also transiently increased from 5.2 ± 2.6 × 103/μL to 9.9 ± 5.0 × 103/μL (P= .01), but neither the erythrocyte counts nor the reticulocyte counts were altered significantly (P & gt; .1). The serum levels of antiplatelet GPIIIa49-66 antibodies exhibited reciprocal reductions during periods of thrombocytosis (P & lt; .07). PEG-rHuMGDF therapy did not increase viral loads significantly (395, 189, and 53 × 103 RNA viral copies/mL; P & gt; .5 compared with baseline values). The striking increase in peripheral platelet counts produced by PEG-rHuMGDF therapy implies that thrombocytopenia in HIV-infected chimpanzees is attributable to insufficient compensatory expansion in platelet production resulting from HIV-impaired delivery of platelets despite stimulated megakaryocytopoiesis. These data suggest that PEG-rHuMGDF therapy may similarly correct peripheral platelet counts in thrombocytopenic HIV-infected patients.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1998
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 91, No. 12 ( 1998-06-15), p. 4427-4433
    Abstract: Three chimpanzees experimentally infected with human immunodeficiency virus (HIV) developed significant chronic thrombocytopenia after 5, 4, and 2 years, with peripheral platelet counts averaging 64 ± 19 × 103/μL (P = .004 compared with 228 ± 92 × 103/μL in 44 normal control animals), mean platelet volumes of 11.2 ± 1.8 fL (P 〉 .5 compared with 10.9 ± 0.7 fL in normal controls), endogenous thrombopoietin (TPO) levels of 926 ± 364 pg/mL (P 〈 .001 compared with 324 ± 256 pg/mL in normal controls), uniformly elevated platelet anti-glycoprotein (GP) IIIa49-66 antibodies, and corresponding viral loads of 534, 260, and 15 × 103 RNA viral copies/mL. Pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) was administered subcutaneously (25 μg/kg twice weekly for 3 doses) to determine the effects of stimulating platelet production on peripheral platelet concentrations in this cohort of thrombocytopenic HIV-infected chimpanzees. PEG-rHuMGDF therapy increased (1) peripheral platelet counts 10-fold (from 64 ± 19 to 599 ± 260 × 103 platelets/μL;P = .02); (2) marrow megakaryocyte numbers 30-fold (from 11.7 ± 6.5 × 106/kg to 353 ± 255 × 106/kg;P = .04); (3) marrow megakaryocyte progenitor cells fourfold (from a mean of 3.6 ± 0.6 to 14.1 × 103 CFU-Meg/1,000 CD34+ marrow cells); and (4) serum levels of Mpl ligand from 926 ± 364 pg/mL (endogenous TPO) to predosing trough levels of 1,840 ± 353 pg/mL PEG-rHuMGDF (P = .02). The peripheral neutrophil counts were also transiently increased from 5.2 ± 2.6 × 103/μL to 9.9 ± 5.0 × 103/μL (P= .01), but neither the erythrocyte counts nor the reticulocyte counts were altered significantly (P 〉 .1). The serum levels of antiplatelet GPIIIa49-66 antibodies exhibited reciprocal reductions during periods of thrombocytosis (P 〈 .07). PEG-rHuMGDF therapy did not increase viral loads significantly (395, 189, and 53 × 103 RNA viral copies/mL; P 〉 .5 compared with baseline values). The striking increase in peripheral platelet counts produced by PEG-rHuMGDF therapy implies that thrombocytopenia in HIV-infected chimpanzees is attributable to insufficient compensatory expansion in platelet production resulting from HIV-impaired delivery of platelets despite stimulated megakaryocytopoiesis. These data suggest that PEG-rHuMGDF therapy may similarly correct peripheral platelet counts in thrombocytopenic HIV-infected patients.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1998
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2012
    In:  Nucleic Acids Research Vol. 40, No. 20 ( 2012-11-01), p. e156-e156
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 40, No. 20 ( 2012-11-01), p. e156-e156
    Type of Medium: Online Resource
    ISSN: 1362-4962 , 0305-1048
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 7_suppl ( 2017-03-01), p. 140-140
    Abstract: 140 Background: Therapeutic vaccination with HPV type 16 synthetic long peptides (HPV16-SLP) results in T cell–mediated regression of HPV16-induced premalignant lesions but fails to install effective immunity in patients with advanced HPV16-positive cervical cancer. We showed that HPV16-SLP vaccination in mice and in patients with advanced cervical cancer patients fosters robust HPV16-specific T cell responses, when combined with chemotherapy. In this study we noted that a single dose of vaccine 2 weeks into the 2nd cycle of chemotherapy was optimal, because at this time the immunosuppressive myeloid cells were down. Methods: We now completed a chemo-immunotherapy study in a larger number of patients with late stage HPV16+ cervical cancer. Three HPV16-SLP vaccine doses were given 2 weeks after the second, third, and fourth cycles of standard chemotherapy. Cohorts of 12 patients each were vaccinated with each of 4 dose levels (20, 40, 100, and 300 µg/ per peptide) of 13 overlapping HPV16 synthetic long peptides (HPV16-SLP) together covering the length of the 2 E6 and E7 proteins. Results: Robust vaccine-induced HPV16-specific T cell responses as assessed by interferon-g Elispot were observed and were sustained throughout the cycles of chemotherapy. These T cell responses were substantially increased in all patients who received HPV16-SLP . In addition, the chemotherapy augmented recall responses to microbial antigens. Such robust T cell responses were not noted in previous trials when similar patients were vaccinated without timing of vaccination during chemotherapy. A marked correlation was observed between the strength of the vaccine-induced immune response and longer-term clinical outcomes such as overall survival. No such correlation exists between the strength of the T cell response against common recall antigens and survival. In addition, a remarkably high proportion of patients survived beyond 20 months after the start of therapy. Conclusions: These results indicate that the survival advantage is specifically related to the strength of the vaccine-induced T cell response and is not due to generally better immuno-competence. Clinical trial information: NCT02128126.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. 5525-5525
    Abstract: 5525 Background: Therapeutic vaccination with HPV type 16 synthetic long peptides (HPV16-SLP) results in T cell–mediated regression of HPV16-induced premalignant lesions but fails to install effective immunity in patients with advanced HPV16-positive cervical cancer. We showed that HPV16-SLP vaccination in mice and in patients with advanced cervical cancer patients fosters robust HPV16-specific T cell responses, when combined with chemotherapy (Welters et al. Sci. Transl. Med., 2016). Methods: We have now completed a chemo-immunotherapy study in 70 patients with late stage HPV16+ cervical cancer (clinical trials.gov NCT02128126). Three HPV16-SLP vaccine doses were given 2 weeks after the second, third and fourth cycle of standard chemotherapy (carboplatin, AUC 6; paclitaxel 175 mg/ m 2 ). Cohorts of 12 patients each were vaccinated with each of 4 dose levels (20, 40, 100 and 300 µg/ per peptide) of 13 overlapping HPV16 synthetic long peptides (HPV16-SLP) together covering the length of the 2 E6 and E7 proteins. Two additional cohorts of 6 patients each were vaccinated with the most promising doses of 40 and 100 µg/ peptide. Results: Robust vaccine-induced HPV16-specific T cell responses as assessed by interferon-γ Elispot were observed and were sustained until at least 30 days after the 6 th cycle of chemotherapy. In addition the chemotherapy augmented recall responses to microbial antigens. Such robust T cell responses were not noted in previous trials when similar patients were vaccinated without timing of vaccination during chemotherapy. A marked and significant positive correlation was observed between the strength of the vaccine-induced immune response and overall survival. No such correlation was observed between the strength of the T cell response against common recall antigens and survival. In addition a remarkably high proportion of patients survived beyond 2 years after the start of therapy. Conclusions: The results suggest that survival duration is directly related to the strength of the vaccine-induced HPV16-specific T cell response and is not due to generally better immuno-competence. Clinical trial information: NCT 02128126.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...