GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  FEMS Microbiology Ecology Vol. 98, No. 1 ( 2022-02-10)
    In: FEMS Microbiology Ecology, Oxford University Press (OUP), Vol. 98, No. 1 ( 2022-02-10)
    Abstract: Fecal transplants are a powerful tool for manipulating the gut microbial community, but how these non-native communities establish in the presence of an intact host gut microbiome is poorly understood. We explored the microbiome of desert woodrats (Neotoma lepida) to determine whether disrupting existing microbial communities using plant secondary compounds (PSCs) or antibiotics increases the establishment of foreign microbes. We administered two fecal transplants between natural populations of adult woodrats that harbor distinct gut microbiota and have different natural dietary exposure to PSCs. First, we administered fecal transplants to recipients given creosote resin, a toxin found in the natural diet of our “donor” population, and compared the gut microbial communities to animals given fecal transplants and control diet using 16S rRNA gene sequencing. Second, we disrupted the gut microbial community of the same recipients with an antibiotic prior to fecal transplants. We found that gut microbial communities of woodrats disrupted with PSCs or antibiotics resembled that of donors more closely than control groups. PSC treatment also enriched microbes associated with metabolizing dietary toxins in transplant recipients. These results demonstrate that microbial community disturbances by PSCs or antibiotics are sufficient to facilitate establishment of foreign microbes in animals with intact microbiomes.
    Type of Medium: Online Resource
    ISSN: 1574-6941
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1501712-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Molecular Ecology Resources Vol. 22, No. 7 ( 2022-10), p. 2573-2586
    In: Molecular Ecology Resources, Wiley, Vol. 22, No. 7 ( 2022-10), p. 2573-2586
    Abstract: DNA metabarcoding is widely used to determine wild animal diets, but whether this technique provides accurate, quantitative measurements is still under debate. To test our ability to accurately estimate the abundance of dietary items using metabarcoding, we fed wild‐caught desert woodrats ( Neotoma lepida ) diets consisting of constant amounts of juniper ( Juniperus osteosperma , 15%) and varying amounts of creosote ( Larrea tridentata , 1%–60%), cactus ( Opuntia sp., 0%–100%) and commercial chow (0%–85%). Using metabarcoding, we compared the representation of items in the original diet samples to that in the faecal samples to test the sensitivity and accuracy of diet metabarcoding, the performance of different bioinformatic pipelines and our ability to correct sequence counts. Metabarcoding, using standard trnL primers, detected creosote, juniper and chow. Different pipelines for assigning taxonomy performed similarly. While creosote was detectable at dietary proportions as low as 1%, we failed to detect cactus in most samples, probably due to a primer mismatch. Creosote read counts increased as its proportion in the diet increased, and we could differentiate when creosote was a minor and major component of the diet. However, we found that estimates of juniper and creosote varied. Using previously suggested methods to correct these errors did not improve accuracy estimates of creosote, but did reduce error for juniper and chow. Our results indicate that metabarcoding can provide quantitative information on dietary composition, but may be limited. We suggest that researchers use caution when quantitatively interpreting diet metabarcoding results unless they first experimentally determine the extent of possible biases.
    Type of Medium: Online Resource
    ISSN: 1755-098X , 1755-0998
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2406833-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 47 ( 2021-11-23)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 47 ( 2021-11-23)
    Abstract: The microbiome is critical for host survival and fitness, but gaps remain in our understanding of how this symbiotic community is structured. Despite evidence that related hosts often harbor similar bacterial communities, it is unclear whether this pattern is due to genetic similarities between hosts or to common ecological selection pressures. Here, using herbivorous rodents in the genus Neotoma , we quantify how geography, diet, and host genetics, alongside neutral processes, influence microbiome structure and stability under natural and captive conditions. Using bacterial and plant metabarcoding, we first characterized dietary and microbiome compositions for animals from 25 populations, representing seven species from 19 sites across the southwestern United States. We then brought wild animals into captivity, reducing the influence of environmental variation. In nature, geography, diet, and phylogeny collectively explained ∼50% of observed microbiome variation. Diet and microbiome diversity were correlated, with different toxin-enriched diets selecting for distinct microbial symbionts. Although diet and geography influenced natural microbiome structure, the effects of host phylogeny were stronger for both wild and captive animals. In captivity, gut microbiomes were altered; however, responses were species specific, indicating again that host genetic background is the most significant predictor of microbiome composition and stability. In captivity, diet effects declined and the effects of host genetic similarity increased. By bridging a critical divide between studies in wild and captive animals, this work underscores the extent to which genetics shape microbiome structure and stability in closely related hosts.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Functional Ecology, Wiley, Vol. 36, No. 8 ( 2022-08), p. 2119-2131
    Abstract: Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes. We investigated the tolerances of two species of herbivorous woodrats, Neotoma lepida (desert woodrat) and Neotoma bryanti (Bryant's woodrat) to creosote bush Larrea tridentata , a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of faeces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin. Toxin tolerance was analysed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, with N. lepida persisting 20% longer than N. bryanti in feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected 〉 25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush. The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometres outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape‐level scales in mammalian herbivores. Read the free Plain Language Summary for this article on the Journal blog.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...