GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Investigative Radiology, Ovid Technologies (Wolters Kluwer Health), Vol. 58, No. 4 ( 2023-4), p. 273-282
    Abstract: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly important in patients with multiple myeloma (MM). The objective of this study was to train and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient (ADC) maps in patients with MM, which automatically segments pelvic bones and subsequently extracts objective, representative ADC measurements from each bone. Materials and Methods In this retrospective multicentric study, 180 MRIs from 54 patients were annotated (semi)manually and used to train an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. The quality of the automatic segmentation was evaluated on 15 manually segmented whole-body MRIs from 3 centers using the dice score. In 3 independent test sets from 3 centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation and manual ADC measurements from 2 independent radiologists was evaluated. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed MM who had undergone bone marrow biopsy, ADC measurements were correlated with biopsy results using Spearman correlation. Results The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, whereas the interrater experiment gave mean dice scores of 0.86, 0.86, and 0.77, respectively. The agreement between radiologists' manual ADC measurements and automatic ADC measurements was as follows: the bias between the first reader and the automatic approach was 49 × 10 −6 mm 2 /s, 7 × 10 −6 mm 2 /s, and −58 × 10 −6 mm 2 /s, and the bias between the second reader and the automatic approach was 12 × 10 −6 mm 2 /s, 2 × 10 −6 mm 2 /s, and −66 × 10 −6 mm 2 /s for the right pelvis, the left pelvis, and the sacral bone, respectively. The bias between reader 1 and reader 2 was 40 × 10 −6 mm 2 /s, 8 × 10 −6 mm 2 /s, and 7 × 10 −6 mm 2 /s, and the mean absolute difference between manual readers was 84 × 10 −6 mm 2 /s, 65 × 10 −6 mm 2 /s, and 75 × 10 −6 mm 2 /s. Automatically extracted ADC values significantly correlated with bone marrow plasma cell infiltration ( R = 0.36, P = 0.007). Conclusions In this study, a nnU-Net was trained that can automatically segment pelvic bone marrow from whole-body ADC maps in multicentric data sets with a quality comparable to manual segmentations. This approach allows automatic, objective bone marrow ADC measurements, which agree well with manual ADC measurements and can help to overcome interrater variability or nonrepresentative measurements. Automatically extracted ADC values significantly correlate with bone marrow plasma cell infiltration and might be of value for automatic staging, risk stratification, or therapy response assessment.
    Type of Medium: Online Resource
    ISSN: 1536-0210 , 0020-9996
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2041543-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Investigative Radiology, Ovid Technologies (Wolters Kluwer Health), Vol. 58, No. 10 ( 2023-10), p. 754-765
    Abstract: In multiple myeloma and its precursor stages, plasma cell infiltration (PCI) and cytogenetic aberrations are important for staging, risk stratification, and response assessment. However, invasive bone marrow (BM) biopsies cannot be performed frequently and multifocally to assess the spatially heterogenous tumor tissue. Therefore, the goal of this study was to establish an automated framework to predict local BM biopsy results from magnetic resonance imaging (MRI). Materials and Methods This retrospective multicentric study used data from center 1 for algorithm training and internal testing, and data from center 2 to 8 for external testing. An nnU-Net was trained for automated segmentation of pelvic BM from T1-weighted whole-body MRI. Radiomics features were extracted from these segmentations, and random forest models were trained to predict PCI and the presence or absence of cytogenetic aberrations. Pearson correlation coefficient and the area under the receiver operating characteristic were used to evaluate the prediction performance for PCI and cytogenetic aberrations, respectively. Results A total of 672 MRIs from 512 patients (median age, 61 years; interquartile range, 53–67 years; 307 men) from 8 centers and 370 corresponding BM biopsies were included. The predicted PCI from the best model was significantly correlated ( P ≤ 0.01) to the actual PCI from biopsy in all internal and external test sets (internal test set: r = 0.71 [0.51, 0.83]; center 2, high-quality test set: r = 0.45 [0.12, 0.69]; center 2, other test set: r = 0.30 [0.07, 0.49]; multicenter test set: r = 0.57 [0.30, 0.76]). The areas under the receiver operating characteristic of the prediction models for the different cytogenetic aberrations ranged from 0.57 to 0.76 for the internal test set, but no model generalized well to all 3 external test sets. Conclusions The automated image analysis framework established in this study allows for noninvasive prediction of a surrogate parameter for PCI, which is significantly correlated to the actual PCI from BM biopsy.
    Type of Medium: Online Resource
    ISSN: 1536-0210 , 0020-9996
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2041543-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...