GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 114, No. D21 ( 2009-11-03)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2009
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 6 ( 2018-06-07), p. 3263-3280
    Abstract: Abstract. This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere reflectance measurements in the oxygen A band (758–770 nm) over bright surfaces. A property of the measurement error covariance matrix is discussed, due to which photons travelling from the surface are given a higher preference over photons that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land, which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires and the October 2017 Portugal wildfire plume over western Europe.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Atmospheric Measurement Techniques Vol. 13, No. 8 ( 2020-08-18), p. 4479-4497
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 8 ( 2020-08-18), p. 4479-4497
    Abstract: Abstract. The goal of the study described in this paper is to determine the accuracy of the radiometric calibration of the TROPOMI instrument in flight, using its Earth radiance and solar irradiance measurements, from which the Earth reflectance is determined. The Earth reflectances are compared to radiative transfer calculations. We restrict ourselves to clear-sky observations as these are less difficult to model than observations containing clouds and/or aerosols. The limiting factor in the radiative transfer calculations is then the knowledge of the surface reflectance. We use OMI and SCIAMACHY surface Lambertian-equivalent reflectivity (LER) information to model the reflectivity of the Earth's surface. This Lambertian, nondirectional description of the surface reflection contribution results in a relatively large source of uncertainty in the calculations. These errors can be reduced significantly by filtering out geometries for which we know that surface LER is a poor approximation of the real surface reflectivity. This filtering is done by comparing the OMI/SCIAMACHY surface LER information to MODIS surface BRDF information. We report calibration accuracies and errors for 21 selected wavelength bands between 328 and 2314 nm, located in TROPOMI spectral bands 3–7. All wavelength bands show good linear response to the intensity of the radiation and negligible offset problems. Reflectances in spectral bands 5 and 6 (wavelength bands 670 to 772 nm) have good absolute agreement with the simulations, showing calibration errors on the order of 0.01 or 0 %–3 %. Trends over the mission lifetime, due to instrument degradation, are studied and found to be negligible at these wavelengths. Reflectances in bands 3 and 4 (wavelength bands 328 to 494 nm), on the other hand, are found to be affected by serious calibration errors, on the order of 0.004–0.02 and ranging between 6 % and 10 %, depending on the wavelength. The TROPOMI requirements (of 2 % maximal deviation) are not met in this case. Trends due to instrument degradation are also found, being strongest for the 328 nm wavelength band and almost absent for the 494 nm wavelength band. The validation results obtained for TROPOMI spectral band 7 show behaviour that we cannot fully explain. As a result, these results call for more research and different methods to study the calibration of the reflectance. It seems plausible, though, that the reflectance for this particular band is underestimated by about 6 %. A table is provided containing the final results for all 21 selected wavelength bands.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 12 ( 2020-11-30), p. 6407-6426
    Abstract: Abstract. The ultraviolet (UV) Absorbing Aerosol Index (AAI) is widely used as an indicator for the presence of absorbing aerosols in the atmosphere. Here we consider the TROPOMI AAI based on the 340 nm/380 nm wavelength pair. We investigate the effects of clouds on the AAI observed at small and large scales. The large-scale effects are studied using an aggregate of TROPOMI measurements over an area mostly devoid of absorbing aerosols (Pacific Ocean). The study reveals that several structural features can be distinguished in the AAI, such as the cloud bow, viewing zenith angle dependence, sunglint, and a previously unexplained increase in AAI values at extreme viewing and solar geometries. We explain these features in terms of the bidirectional reflectance distribution function (BRDF) of the scene in combination with the different ratios of diffuse and direct illumination of the surface at 340 and 380 nm. To reduce the dependency on the BRDF and homogenize the AAI distribution across the orbit, we present three different AAI retrieval models: the traditional Lambertian scene model (LSM), a Lambertian cloud model (LCM), and a scattering cloud model (SCM). We perform a model study to assess the propagation of errors in auxiliary databases used in the cloud models. The three models are then applied to the same low-aerosol region. Results show that using the LCM and SCM gives on average a higher AAI than the LSM. Additionally, a more homogeneous distribution is retrieved across the orbit. At the small scale, related to the high spatial resolution of TROPOMI, strong local increases and decreases in AAI are observed in the presence of clouds. The BRDF effect presented here is a first step – more research is needed to explain the small-scale cloud effects on the AAI.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 3 ( 2021-03-31), p. 2451-2476
    Abstract: Abstract. Accurate knowledge of cloud properties is essential to the measurement of atmospheric composition from space. In this work we assess the quality of the cloud data from three Copernicus Sentinel-5 Precursor (S5P) TROPOMI cloud products: (i) S5P OCRA/ROCINN_CAL (Optical Cloud Recognition Algorithm/Retrieval of Cloud Information using Neural Networks;Clouds-As-Layers), (ii) S5P OCRA/ROCINN_CRB (Clouds-as-Reflecting Boundaries), and (iii) S5P FRESCO-S (Fast Retrieval Scheme for Clouds from Oxygen absorption bands – Sentinel). Target properties of this work are cloud-top height and cloud optical thickness (OCRA/ROCINN_CAL), cloud height (OCRA/ROCINN_CRB and FRESCO-S), and radiometric cloud fraction (all three algorithms). The analysis combines (i) the examination of cloud maps for artificial geographical patterns, (ii) the comparison to other satellite cloud data (MODIS, NPP-VIIRS, and OMI O2–O2), and (iii) ground-based validation with respect to correlative observations (30 April 2018 to 27 February 2020) from the Cloudnet network of ceilometers, lidars, and radars. Zonal mean latitudinal variation of S5P cloud properties is similar to that of other satellite data. S5P OCRA/ROCINN_CAL agrees well with NPP VIIRS cloud-top height and cloud optical thickness and with Cloudnet cloud-top height, especially for the low (mostly liquid) clouds. For the high clouds, S5P OCRA/ROCINN_CAL cloud-top height is below the cloud-top height of VIIRS and of Cloudnet, while its cloud optical thickness is higher than that of VIIRS. S5P OCRA/ROCINN_CRB and S5P FRESCO cloud height are well below the Cloudnet cloud mean height for the low clouds but match on average better with the Cloudnet cloud mean height for the higher clouds. As opposed to S5P OCRA/ROCINN_CRB and S5P FRESCO, S5P OCRA/ROCINN_CAL is well able to match the lowest CTH mode of the Cloudnet observations. Peculiar geographical patterns are identified in the cloud products and will be mitigated in future releases of the cloud data products.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 1 ( 2018-01-10), p. 161-175
    Abstract: Abstract. Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution – an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Natural Hazards and Earth System Sciences, Copernicus GmbH, Vol. 21, No. 11 ( 2021-11-10), p. 3367-3405
    Abstract: Abstract. The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986, last access: 5 November 2021). The alert products developed by the EUNADICS-AV EWS, i.e. near-real-time (NRT) observations, email notifications and netCDF (Network Common Data Form) alert data products (called NCAP files), have shown significant interest in using selective detection of natural airborne hazards from polar-orbiting satellites. The combination of several sensors inside a single global system demonstrates the advantage of using a triggered approach to obtain selective detection from observations, which cannot initially discriminate the different aerosol types. Satellite products from hyperspectral ultraviolet–visible (UV–vis) and infrared (IR) sensors (e.g. TROPOMI – TROPOspheric Monitoring Instrument – and IASI – Infrared Atmospheric Sounding Interferometer) and a broadband geostationary imager (Spinning Enhanced Visible and InfraRed Imager; SEVIRI) and retrievals from ground-based networks (e.g. EARLINET – European Aerosol Research Lidar Network, E-PROFILE and the regional network from volcano observatories) are combined by our system to create tailored alert products (e.g. selective ash detection, SO2 column and plume height, dust cloud, and smoke from wildfires). A total of 23 different alert products are implemented, using 1 geostationary and 13 polar-orbiting satellite platforms, 3 external existing service, and 2 EU and 2 regional ground-based networks. This allows for the identification and the tracking of extreme events. The EUNADICS-AV EWS has also shown the need to implement a future relay of radiological data (gamma dose rate and radionuclides concentrations in ground-level air) in the case of a nuclear accident. This highlights the interest of operating early warnings with the use of a homogenised dataset. For the four types of airborne hazard, the EUNADICS-AV EWS has demonstrated its capability to provide NRT alert data products to trigger data assimilation and dispersion modelling providing forecasts and inverse modelling for source term estimate. Not all of our alert data products (NCAP files) are publicly disseminated. Access to our alert products is currently restricted to key users (i.e. Volcanic Ash Advisory Centres, national meteorological services, the World Meteorological Organization, governments, volcano observatories and research collaborators), as these are considered pre-decisional products. On the other hand, thanks to the EUNADICS-AV–SACS (Support to Aviation Control Service) web interface (https://sacs.aeronomie.be, last access: 5 November 2021), the main part of the satellite observations used by the EUNADICS-AV EWS is shown in NRT, with public email notification of volcanic emission and delivery of tailored images and NCAP files. All of the ATM stakeholders (e.g. pilots, airlines and passengers) can access these alert products through this free channel.
    Type of Medium: Online Resource
    ISSN: 1684-9981
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2069216-X
    detail.hit.zdb_id: 2064587-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 1 ( 2020-01-14), p. 457-474
    Abstract: Abstract. Aerosol and cloud properties over southern China during the 10-year period 2006–2015 are analysed based on observations from passive and active satellite sensors and emission data. The results show a strong decrease in aerosol optical depth (AOD) over the study area, accompanied by an increase in liquid cloud cover and cloud liquid water path (LWP). The most significant changes occurred mainly in late autumn and early winter: AOD decreased by about 35 %, coinciding with an increase in liquid cloud fraction by 40 % and a near doubling of LWP in November and December. Analysis of emissions suggests that decreases in carbonaceous aerosol emissions from biomass burning activities were responsible for part of the AOD decrease, while inventories of other, anthropogenic emissions mainly showed increases. Analysis of precipitation changes suggests that an increase in precipitation also contributed to the overall aerosol reduction. Possible explanatory mechanisms for these changes were examined, including changes in circulation patterns and aerosol–cloud interactions (ACIs). Further analysis of changes in aerosol vertical profiles demonstrates a consistency of the observed aerosol and cloud changes with the aerosol semi-direct effect, which depends on relative heights of the aerosol and cloud layers: fewer absorbing aerosols in the cloud layer would lead to an overall decrease in the evaporation of cloud droplets, thus increasing cloud LWP and cover. While this mechanism cannot be proven based on the present observation-based analysis, these are indeed the signs of the reported changes.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Measurement Techniques Vol. 12, No. 5 ( 2019-05-23), p. 2863-2879
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 5 ( 2019-05-23), p. 2863-2879
    Abstract: Abstract. Retrievals of cloud properties from geostationary satellite sensors offer extensive spatial and temporal coverage and resolution. The high temporal resolution allows the observation of diurnally resolved cloud properties. However, retrievals are sensitive to varying illumination and viewing geometries, including cloud glory and cloud bow conditions, which can lead to irregularities in the diurnal data record. In this study, these conditions and their effects on liquid cloud optical thickness and effective radius retrievals are analyzed using the Cloud Physical Properties (CPP) algorithm. This analysis is based on the use of Spinning Enhanced Visible and Infrared Imager (SEVIRI) reflectances and products from Meteosat-8 and Meteosat-10, which are located over the Indian and Atlantic Ocean, respectively, and cover an extensive common area under different viewing angles. Comparisons of the retrievals from two full days, over ocean and land, and using different spectral combinations of visible and shortwave-infrared channels, are performed, to assess the importance of these factors in the retrieval process. The sensitivity of the cloud-bow- and cloud-glory-related irregularities to the width of the assumed droplet size distribution is analyzed by using different values of the effective variance of the size distribution. The results suggest for marine stratocumulus clouds an effective variance of around 0.05, which implies a narrower size distribution than typically assumed in satellite-based retrievals. For the case with continental clouds a broader size distribution (effective variance around 0.15) is obtained. This highlights the importance of appropriate size distribution assumptions and provides a way to improve the quality of cloud products in future climate data record releases.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Measurement Techniques Vol. 12, No. 4 ( 2019-04-23), p. 2485-2498
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 4 ( 2019-04-23), p. 2485-2498
    Abstract: Abstract. The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A band) algorithm is a simple, fast and robust algorithm used to retrieve cloud information in operational satellite data processing. It has been applied to GOME-1 (Global Ozone Monitoring Experiment), SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography), GOME-2 and more recently to TROPOMI (Tropospheric Monitoring Instrument). FRESCO retrieves effective cloud fraction and cloud pressure from measurements in the oxygen A band around 761 nm. In this paper, we propose a new version of the algorithm, called FRESCO-B, which is based on measurements in the oxygen B band around 687 nm. Such a method is interesting for vegetated surfaces where the surface albedo is much lower in the B band than in the A band, which limits the ground contribution to the top-of-atmosphere reflectances. In this study we first perform retrieval simulations. These show that the retrieved cloud pressures from FRESCO-B and FRESCO differ only between −10 and +10 hPa, except for high, thin clouds over vegetation where the difference is larger (about +15 to +30 hPa), with FRESCO-B yielding higher pressure. Next, inter-comparison between FRESCO-B and FRESCO retrievals over 1 month of GOME-2B data reveals that the effective cloud fractions retrieved in the O2 A and B bands are very similar (mean difference of 0.003), while the cloud pressures show a mean difference of 11.5 hPa, with FRESCO-B retrieving higher pressures than FRESCO. This agrees with the simulations and is partly due to deeper photon penetrations of the O2 B band in clouds compared to the O2 A-band photons and partly due to the surface albedo bias in FRESCO. Finally, validation with ground-based measurements shows that the FRESCO-B cloud pressure represents an altitude within the cloud boundaries for clouds that are not too far from the Lambertian reflector model, which occurs in about 50 % of the cases.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...